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Abstract
The amount of data available on the web is constantly growing, and e-
commerce websites are no exception. Considering the abundance of available
information, finding offers for the same product in the catalogue of different
retailers represents a challenge. This problem is an interesting one and
addresses the needs of multiple actors. A customer is interested in finding
the best deal for the product they want to buy. A retailer wants to keep
up to date with the competition and adapt its pricing strategy accordingly.
Various services already offer the possibility of finding duplicate products in
catalogues of e-commerce retailers, but their solutions are based on matching
a Global Trade Identification Number (GTIN). This strategy is limited because
a GTIN may not be made publicly available by a competitor, may be different
for the same product exported by the manufacturer to different markets or may
not even exist for low-value products. The field of Entity Resolution (ER),
a sub-branch of Natural Language Processing (NLP), focuses on solving the
issue of matching duplicate database entries when a deterministic identifier is
not available. We investigate various solutions from the the field and present a
new model called Spring R-SupCon that focuses on low volume datasets. Our
work builds upon the recently introduced model, R-SupCon, introducing a
new learning scheme that improves R-SupCon’s performance by up to 74.47%
F1 score, and surpasses Ditto by up 12% F1 score for low volume datasets.
Moreover, our experiments show that smaller language models can be used
for ER with minimal loss in performance. This has the potential to extend
the adoption of Transformer-based solutions to companies and markets where
datasets are difficult to create, like it is the case for the Swedish marketplace
Fyndiq.

Keywords
Transformers, Language Models, Deep Neural Networks, Entity Resolution,
Duplicate Detection, Entity Matching, Record Linkage, Contrastive Learning,
e-commerce
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Sammanfattning
Mängden data på internet växer konstant och e-handeln är inget undantag.
Konsumenter har idag många valmöjligheter varifrån de väljer att göra sina
inköp från. Detta gör att det blir svårare och svårare att hitta det bästa
erbjudandet. Även för återförsäljare ökar svårigheten att veta vilken konkurrent
som har lägst pris. Det finns tillgängliga lösningar på detta problem men
de använder produktunika identifierare såsom Global Trade Identification
Number (förkortat “GTIN”). Då det finns en rad utmaningar att bara förlita
sig på lösningar som baseras på GTIN behövs ett alternativt tillvägagångssätt.
GTIN är exempelvis inte en offentlig information och identifieraren kan
dessutom vara en annan när samma produkt erbjuds på en annan marknad.
Det här projektet undersöker alternativa lösningar som inte är baserade på
en deterministisk identifierare. Detta projekt förlitar sig istället på text såsom
produktens namn för att fastställa matchningar mellan olika erbjudanden. En
rad olika implementeringar baserade på maskininlärning och djupinlärning
studeras i detta projekt. Projektet har dock ett särskilt fokus på “Transformer”-
baserade språkmodeller såsom BERT. Detta projekt visar hur man generera
proprietär data. Projektet föreslår även ett nytt inlärningsschema och bevisar
dess fördelar.

Nyckelord
Transformers, Språkmodeller, Djupinlärning, Entitetserkännande, Dubblett-
detektering, Entitetsmatchning, Rekordkoppling, e-handel
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Résumé
Le volume des données qui se trouve sur l’internet est en une augmentation

constante et les commerces électroniques ne font pas note discordante. Le
consommateur a aujourd’hui beaucoup des options quand il decide d’où faire
son achat. Trouver le meilleur prix devient de plus en plus difficile. Les
entreprises qui gerent cettes plates-formes ont aussi la difficulté de savoir en
tous moments lesquels de ses concurrents ont le meilleur prix. Il y-a déjà des
solutions en ligne qui ont l’objectif de résoudre ce problème, mais ils utilisent
un identifiant de produit unique qui s’appelle Global Trade identification
number (ou GTIN). Plusieurs difficultés posent des barriers sur cette solution.
Par exemple, GTIN n’est pas public peut-être, ou des GTINs différents peut-
être assigne par la fabricante au même produit pour distinguer des marchés
différents. Ce projet étudie des solutions alternatives qui ne sont pas basées
sur avoir un identifiant unique. On discute des methods qui font la décision
en fonction du nom des produits, en utilisant des algorithmes d’apprentissage
automatique ou d’apprentissage en profondeur. Le projet se concentre sur
des solutions avec ”Transformer” modèles de langages, comme BERT. On
voit aussi comme peut-on créer un ensemble de données propriétaire pour
enseigner le modèle. Finalement, une nouvelle method d’apprentissage est
proposée et analysée.

Mots-clés
Transformers, Modèles de langage, Apprentisage en profondeur, Réso-

lution d’entité, Détection de doublons, Apprentisage contrastif, commerce
électronique
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Chapter 1

Introduction

In this thesis, we discuss the problem of Entity Resolution (ER), with a focus
on e-commerce. In the current chapter we introduce the full context of the
problem being studied. We will also present here the processes our work
follow, and the limits of the project’s scope.

1.1 Problem
In table 1.1 we have two lists of TVs and we want to see if they contain
matching pairs. Items on the left came from the website of Elgiganten ∗ (data
source A), whereas the items on the right came from the website of Webhallen
† (data source B). Our task is to identify offers in the two sources that refer to
the same physical products. One hint we can look at is the brand. Even when
that information is not available in the dedicated column, we can identify it
in the product name. Nevertheless, we can observe that multiple TVs are
produced by the same brand so that can not be the sole signal. A stronger
indicator is the model name, that is usually available for TVs. In this case we
can see that Elgiganten’s first product has the same brand and model name as
Webhallen’s second product. For humans it is easy to identify the model name
just by looking at a product, but how would a computer do it? One way could
be through matching a regular expression but this becomes difficult since there
is no standard way of defining model names. If the Global Trade Item Number
(GTIN) would be available, regular expressions would be a feasible solution,
but retailers don’t always make this information available.

∗ https://www.elgiganten.se/ † https://www.webhallen.com/

https://www.elgiganten.se/
https://www.webhallen.com/


2 | Introduction

Product name Brand Price
TV OLED Lg
OLED65G1
2021

4999

LG Electronics
OLED55C1

LG 12000

TCL Tcl 65c825
65” Led-tv

TCL 7500

Product name Brand Price
LG Electronics
65NANO756PR

LG 8999

LG Electronics
OLED65G1

LG 5198

Apple TV 4K 64
GB 2021

Apple 15000

Table 1.1: A sample of an ER problem (matches are highlighted)

Sometimes we do not have so much information available. Table 1.2
shows another sample of an ER problem. In this case we are taking a look
at entertaiment products from two Swedish retailers. These are low cost, high
volume products, and are usually less documented than high end products such
as TV. We do not have a GTIN or even a model name for these products
so the matching has to be purely textual. An ER model has to understand
for example that a card holder with a flag model is different from the actual
flag or that a card holder has little to do with card games or football cards.
This example shows why language models are necessary if we want model to
reliably interpret these subtleties.

Product name Price
Football card Starter
package Fifa 365 2021
(panini)

149

Ukrainian flag card
holder

399

Nordic Uno basic card
game family game

499

Product name Price
Flag of Ukraine
Ukrainian national
flags Garden flags

159

Uno basic card game
family game

549

UNO Minimalist card
game - 2 to 10 players
- 7 years and older

349

Table 1.2: A sample of a more difficult ER problem (matches are highlighted)

Simply put, the goal of any ER solution is to take two (or more) data
sources and match those entries that refer to the same real-world data entity.
A particular case, usually referred to as duplicate detection [1], appears when
a data source is compared against itself.

In particular, in the case of e-commerce, the data sources are generally



Introduction | 3

obtained from the catalogues of retailers, and their entries are called offers.
The real-world entity these offers refer to are called products (sg. product). In
other words, a pair of offers should be labelled as a match if and only if they
advertise the same product.

As we move forward with the presentation of this work it is worth keeping
in mind that the these are only samples. The text available for one single
offer is usually much longer than what we could have shown in a report, and
it can cover multiple functions (i.e., title, description, specifications table).
Moreover, the sizes of retailer’s products catalogues are multiple orders of
magnitude higher than the 3 offers per retailer we show in the two examples
above. This dimensionality constitutes another important factor to keep in
mind when designing a solution. The volume of data is also the main reason
why we require an automatic solution.

1.1.1 Original problem and definition
We carry out this work under the supervision of engineers from Panprices
AB, a Stockholm-based company that offers users the possibility to shop
for products across borders. They continuously acquire offers from retailers
across Europe. One challenge the face is to identify which of those offers
refer to the same product. Panprices AB needs this information for displaying
all available offers on a product’s page to help their customer make the best
decision when shopping online.

Their current solution for grouping offers together is using GTINs to
identify products uniquely. The issue is that not all retailers make the GTIN
available, so their offers may be left out. For the company, this means that
they may fail to show their users the best offers for a product just because
they cannot match them. Moreover, given the amount of data Panprices AB
deals with, hiring humans to perform these matches is unfeasible. Some
manual matching is performed for specific products in their catalogue, but
these operations can not be extended to a large pool of products.

The company needs an autonomous tool that would take as an input the
catalogues of offers and give matching pairs at the output. It is important to the
company that false positives are rare (measured by False Positive Rate (FPR)),
while false negatives are more admissible (measured by False Negative Rate
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(FNR)). In other words, it is better to overlook some offers than to add offers
to the wrong product list. That is because a customer’s experience is more
negatively influenced by a false announcement than a lack of one offer for a
given product. Panprices have defined that an ideal range for their operations
is FPR < 1% and FNR < 5%

1.1.2 Scientific and engineering issues
From a scientific perspective this is an interesting problem due to the
difficulties it introduces. As presented in Section 2.1, this is an ER problem,
which has been studied for a long time. Various methods have been applied to
the problem: probabilistic methods [2], evolutionary algorithms [3], Machine
Learning (ML) [4], Recurrent Neural Networks (RNNs) [5]. Lately, following
the success of Transformer based architectures [6] on Natural Language
Processing (NLP) tasks, we have seen proposed solutions that are powered
by Transformer-based Pre-trained Language Models (TPLMs) [7, 8].

Since the current state of the art is given by TPLM based solutions [7,
9], we will focus on them. At the same time, we will have a look at some
information about earlier alternatives for comparison purposes.
It has been shown [7, 8, 10] that these models are more effective than their
predecessors, especially when a large dataset is available and when the data is
less structured, has “dirty” fields or missing values.

1.2 Research question
We address the following research questions:

Can we use Transformer-based Pre-trained Language Models (TPLMs)
to automatically identify e-commerce offers concerning the same prod-
uct? What is the correlation between model performance and training
data volume for such tasks? How can TPLMs improve the task of ER for
e-commerce when low data volumes are available?
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1.3 Purpose
Our purpose in this project is to identify, select, improve and use State of the
Art (SoA) solutions for ER. We are interested in two particular contexts:

1. The first context we consider is the one where it is not possible
to automatically generate a dataset for solving the ER problem.
Particularly, we want to know how various solutions deal with situations
where the trainig data is scarce.

2. The second context we consider is the one where a dataset can be
automatically generated by using GTIN heuristics.

1.4 Goals
First and foremost, the goal of the thesis project is to understand the landscape
of solutions already available in the literature. How do they differ? What
similarities can one identify among some / all of them? Are the solutions
domain-specific (e-commerce, people registry, health domain), or are they
more generally applicable?

Secondly, we will identify ways in which we can improve the performance
of SoA models. We apply our ideas and demonstrate their usefulness through
experiments.

Last but not least, we want the solution to be directly applicable to a need
in the industry. Therefore, the generated knowledge should be transferable to
the environment Panprices AB is dealing with. More precisely, this means
that we are looking at the performance of various solutions on the company’s
proprietary data, as well as openly available datasets.

Our contributions are:

• we present Spring R-SupCon, an improvement on the SoA (Goal 2)

• we demonstrate the power of smaller language models in the context of
Entity Resolution (ER) (Goal 2)

• we introduce a way to produce lower volume datasets from open datasets
to diversify the conditions under which Entity Resolution (ER) models
are tested (Goal 2)
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• we provide a review of the ER scientific literature (Goal 1)

• we apply the gained knowledge to the particular case of Panprices AB
(Goal 3)

1.5 Research Methodology
As stated in the previous section, we are looking at solutions for the ER
problem. These solutions are in fact models that try to understand whether
a pair of offers is describing the same product or not. In other words, our goal
is to model the process through each a human is able to tell when two offers
are a match.

We conduct our work with the objective of obtaining quantifiable results.
Through our methods, we perform a quantitative analysis of various solutions
from the SoA, through experimenting. Our results are generated by observing
the output of the models we study. According to data science best practices,
we split all of the studied datasets in three partitions: training set, validation set
and test set. We test all the models on the same datasets and we measure their
performance using the same operationalization methods to isolate the model’s
ability to understand the problem as the sole generator of differences in results.

For the goal of comparing between different models, we are not interested
in particular examples. We use operationalizations of the model’s performance
that take into account the statistical results observed when testing the model
against the true results.

1.6 Delimitations
We will see in Section 2.1, that an ER solution may choose to focus on one
of the two major components: blocking or matching. The blocking algorithm
has been thoroughly explored in the literature [11, 12, 13]. Even if it has a
major impact on the functioning of the whole ER pipeline, we choose not to
focus on this part. Instead, we will use the same blocking algorithm for all the
matching algorithms to eliminate differences that could arise from this step.

Another area where the literature focuses is schema alignment [14, 15,
16]. We purposefully overlook this step because Language Models (LMs)



Introduction | 7

are inherently schema-agnostic. All the information related to one offer is
concatenated into a single string [10, 8]. Where the authors suggest [7], we
use the attribute names as well and use additional tokens for distinguishing
attribute names and values.

1.7 Sustainability and ethics
The data we use for this project is either coming from open datasets or from the
host company’s catalogue. None of the data we use is targeting individuals,
and as such it does not contain any sensitive information protected by privacy
laws such as General Data Protection Regulation (GDPR). We target a problem
that is too large to be manually handled by humans, so the automation methods
we present could not be used to replace humans, but rather to enhance their
potential in navigating the e-commerce space. Therefore we consider that no
ethical issues arise due to the current work.

For the goal of generating the concrete results of this work, we run
experiments in the cloud. Because of that, our energy consumption is strictly
correlated with the amount of money we spend, so we are motivated to use
as few resources as possible. We provide an automated script to make sure
that the Virtual Machines (VMs) we use do not run for longer than required,
saving energy when possible. In our work, we also address the analyze the
benefits of larger models over smaller ones, taking into account the correlation
between energy consumption and observed performance. We deem our project
sustainable in the virtue of these traits.

1.8 Outline
In Chapter 2 we present a survey on the current ER solutions. We also survey
LMs and explore ideas that might be relevant for the current problem. In
Chapter 3 we discuss the main contributions of this project to the scientific
literature, as well as how the problem of ER for e-commerce can be approached
in the industry. We present and discuss the results of this work in Chapter 4.
Finally, we give our conclusion in Chapter 5, as well as directions that may be
worth following in future research.
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Chapter 2

Background

We will begin this chapter by looking at a general architecture of an ER
solution. Secondly, we will take a look into what TPLMs are available, how
they relate and how they differ from each other.

Additionally, we will look at different approaches to solving the ER
problem, including both classical approaches and transformer-based solutions.
The purpose is to understand whether previous research confirms the intuition
that TPLMs have pushed the performance for ER solutions. If so, how are they
integrated into the overall architecture of the more modern solutions?

2.1 General architecture of an ER solution
The ER problem has been studied for a long time [17], and new solutions have
been generated as Computer Science (and its sub-fields) evolved. Over the
years, it has been known under different names such as entity matching, data
matching, duplicate detection, or data linkage [1].

The most straightforward architecture of a possible solution is shown in
Figure 2.1. Let a ∈ A be an entry in data source A, and b ∈ B, an entry in data
source B. The job of the matching block is to look at all pairs (a, b) ∈ A×B,
belonging to the cartesian product of the two sets (data sources) and decide
which of them refer to the same real-word entity.

One obvious problem with this approach is that the matching block will
have to go through all the possible pairs (a, b) ∈ A × B. For |A| = m and
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Figure 2.1: Simple architecture for an ER solution

|B| = n, the algorithm will have a complexity of O(m × n × p), where p

is the computation required for checking one potential match. For example,
if both retailers have 100,000 products in their catalogue and it takes 1ms to
check one pair, then checking all the possible pairs would take 115 days. We
can reduce the inference time by ensuring a rapid assessment of every possible
pair (low values of p). We can do this in a very simplistic way by reducing the
information we process, only using the input signals we consider the most
relevant. Another way we could gain speed is by reducing the number of
parameters and the calculations performed by the model, but both of these may
affect the accuracy of the predictions. Instead, we are looking for a fast way
to discard unfeasible pairs, while keeping the accuracy high for pairs where
the decision is more difficult. To achieve this, we introduce an additional step,
called blocking, to discard unfeasible pairs, as seen in Figure 2.2.

Leveraging recent progress in the fields of Machine Learning (ML) and
Deep Learning (DL), newer solutions [4, 5, 7, 8] train a matcher block to
reliably verify pairs, using massive datasets. The ML architecture for the ER
task is shown in Figure 2.3.
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Figure 2.2: Architecture for an ER solution, including a blocking step

Figure 2.3: ML architecture for an ER solution, including a blocking step

2.2 TPLMs

2.2.1 The Attention Mechanism
The Transformer architecture, introduced by Vaswani et al. [6], took over
NLP, showing better performance in a wide range of tasks. The original
Transformer consisted of several encoding layers stacked upon each other
and corresponding decoding layers. It was designed for a task of Neural
Machine Translation (NMT). The great advantage it has over the previous SoA,
RNNs, is that it is highly parallelizable, taking advantage of modern hardware,
namely Graphical Processing Units (GPUs). Another great advantage of this
architecture is that it can produce context-aware embeddings instead of static
embeddings like GloVe [18], word2Vec [19] or fastText [20].
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Multi-headed attention mechanisms power up every encoding and
decoding layer [6]. To understand the previous phrase, we first need to
understand what attention mechanisms are. This concept is older than the
Transformer architecture and has been previously used with RNNs to mitigate
the issue of losing connections over a long sequence. In a nutshell, having an
attention mechanism means that we attribute some weight to all of the words in
a sentence (the context) when we compute the embedding of one target word.
This is illustrated in Figure 2.4, where we have the word “bank” as target,
and we are trying to create a contextualized embedding for it. The context is
important because the same word can have different meanings depending on
the sentence where it is used. We see this with the word “bank” here, and we
saw it with the word “card” in Table 1.2.

Figure 2.4: The intuition behind an attention mechanism

Computers are not able to understand words as humans do. To overcome
this challenge, words are embedded in a high dimensional space. In other
words, a vector is attributed to each word. The more semantically similar the
words are, the closer they should be in this space. Thus, a computer can make
sense of the meanings behind the strings. This is the way in which word2vec
and GloVe operate, but it is problematic when we encounter homonyms, words
with the same form that hold different meanings. Humans can understand
that the word “bank” in the sentence above refers to a financial institution, as
opposed to an object on which one can sit, based on the context provided by
the other words.

To account for context, each word j takes from the meaning of the other
words. In the figure above, wi,j; i, j ∈ {1, 2, ..., 7} represents the weight
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attributed to word i when calculating the embedding for word j. Finally, the
new embedding of word j becomes vj =

∑7
i=1 wi,j ∗ vi. This means that not

all the words in a target’s context are considered equal. For example, we can
expect the words “money”, “bank” and “account” to carry the most relevant
meaning to the target word “bank” in this context. Thus, we expect w36, w66

and w67 to have higher values than those of the others.

These weights (wi,j) are calculated by looking at the similarity in meaning
of every pair of words. More precisely, Figure 2.5 details how the weights are
calculated for the target word “bank”.

Figure 2.5: Detailed representation of an attention mechanism

In Figure 2.5, the attention mechanism takes the vector representation of
the word “bank” and performs a dot product operation between it and the
representation of all the words in the sentence. This gives the model a sense
of how similar the words are, which then indicates how important each word
in the context is for understanding the meaning of the target. The results are
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normalized. This prevents the representations from becoming larger with each
summation. Finally, the upper part of the figure depicts the same process as
shown in Figure 2.4, where each embedding is multiplied with a weight and
then all the values are added up to form the new representation of the target
word “bank”.

Notice that during the attention process, the representation of a word is
used 3 times, marked on the figure with letters K, Q and V. These letters stand
for key, query and respectively value. They have been inspired from a database
analogy. The target word is the query, and we try to match that against all the
keys through dot products. In a database use case this should return a sample
of values whose keys are matching the given query. Instead, each value is
considered to match to some degree the given query, but the values are scaled
by the similarity between query and key to account for importance.

To distinguish between the three different representations of words, the
model uses three matrices: MQ,MK ,MV . A word is transformed using one
of the matrices to obtain a representation tailored to one of the three scenarios
(query, key or value). For example, to obtain the query representation of the
word “bank”, with embedding v6 ∈ Rd, we simply perform q6 = v6∗MQ. The
representation of the word “bank” will be different if it is used at the bottom
(as a key), as the target word (query) or at the top for finally computing the
new representation (as a value). These matrices contain the parameters being
learned during the training of attention-based models.

So far we presented how an attention mechanism works. Instead of only
one such mechanism, a Transformer hosts multiple attention heads per layer,
thus the name of “multi-headed attention mechanism”. Each attention head is
initialized differently, and learns to look for different relations between words
[21].

2.2.2 An overview of LMs
Based on the paper published by Vaswani et al., [6], the idea of having pre-
trained LMs for obtaining contextualized embeddings for other NLP tasks
came to life. These LMs usually contain either just the encoder or just the
decoder portion of the Transformer architecture. In this subsection, we will
take a look at different TPLMs publicly available.
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Embeddings from Language Models (ELMo) [22] was one of the first
models to propose contextualized embeddings in the field of NLP. Their
architecture was not based on Transformers, and the resulting embeddings
were to be used without the opportunity to fine-tune them for a downstream
task. Nevertheless, ELMo deserves to be mentioned as one of the pioneers of
LMs.

Generative Pre-training Transformer (GPT) [23] was the pioneer of
Transformer-based Pre-trained Language Models (TPLMs). Researchers
from OpenAI demonstrated how their model could achieve State of the Art
(SoA) results in popular tasks in the field of NLP, such as Natural language
inference, Question Answering, Sentence Similarity and Classification. Their
architecture is based on the decoder part of the original Transformer
architecture. The model was pre-trained on a “diverse corpus of unlabeled
text”. The authors published the model alongside the paper, enabling anyone
to use it to solve other problems where an understanding of language was
beneficial or even necessary. The same research group gave us some
evolutions of this model in the forms of GPT-2 [24] and GPT-3 [25].

Bidirectional Encoder Representations from Transformer (BERT) [26],
introduced by Google in 2019, is probably one of the most spread TPLMs.
It and its variants are cited in most of the newer works focusing on NLP tasks.
As we will see in Section 2.3, solutions for the ER problem benefit from using
this TPLM as well. The novelty brought by BERT is its bidirectionality, which
was not present in the initial transformer architecture [6]. For training BERT,
Devlin et al., developed an algorithm to mask some of the tokens using a
special “[MASK]” token and then have the model predict what those tokens
could be. This process is known as Masked Language Modeling (MLM). A
secondary task used for training BERT is Next Sentence Prediction (NSP), a
task in which the model is given two sentences to predict whether the second
one can be following the first one in a corpus from a logical perspective. The
data this TPLM has been trained on is composed of books and the English
Wikipedia. The authors released the base model and other versions obtained
by varying the number of parameters in the model.

Later, Yang et al., [27] argued that using the “[MASK]” token in
pretraining BERT creates a discrepancy between pretraining and fine-tuning
BERT for downstream tasks. Instead, they proposed another model called
XLNet, which is autoregressive. To tackle the issue signalled by Devlin et al.,
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[26], that language is inherently not autoregressive, the authors of XLNet [27]
came up with a permutation algorithm. The main idea was that the model
would see multiple permutations of the same sequence of tokens, thus using
the information of subsequent tokens (that appear before the target in at least
one permutation). Their experiments empirically prove that XLNet performs
better than BERT in all the downstream tasks presented in the original BERT
paper.

Liu et al., [28] argued that the architecture and training objectives proposed
by XLNet are not, in fact, superior to the ones used by BERT. Instead, they
show that XLNet was trained on a more extensive corpus than BERT. Thus,
the performance improvement comes from the model seeing more data during
training time rather than from a superior architecture. Robustly Optimized
BERT pre-training Approach (RoBERTa) has, in fact, the same architecture
as BERT, but it was trained on a larger corpus. Additionally, the Next
Sentence Prediction (NSP) task is removed from pretraining. RoBERTa’s
authors empirically prove that it performs better than XLNet, demonstrating
that their hypothesis is true.

One big issue of TPLMs is that they require many parameters to be
trained, making them resource hungry [29]. There are researchers [29, 30, 31]
who proposed ways to reduce these models while keeping the performance
close to the bigger models. A Lite BERT (ALBERT) [30], for example,
proposes two techniques for reducing the number of parameters: decoupling
the embedding size of the output from the embedding size of the hidden layers
and parameter sharing across the encoding layers. The former means that the
size of the embeddings in the hidden layers can grow, allowing them to capture
more information but without inflicting a quadratic increase in the number of
parameters. The latter reduces the parameters used by a factor equal to the
number of encoding layers used.

Another work, DistilBERT [29], proposes reducing the number of
parameters in the model by using fewer encoding layers. In order to keep the
performance of the model high, they perform knowledge distillation, allowing
the smaller model (student) to learn how a bigger model (the teacher) responds
to different inputs. The student model is thus, able to learn how the teacher
model processes information and learns to replicate the results using a smaller
number of parameters.
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Similarly to DistilBERT [29], Jiao et al., [31] propose a distillation
algorithm to fit the power of BERT-base into a smaller model. What makes
TinyBERT different is that the distillation learning is not only applied to the
last layer but information from intermediate layers is also used to train the
student model. Two additional loss function constituents are added to this
end: hidden state distillation and embedding layer distillation—the former
aims to reduce the difference in the attention matrices between the teacher
and the model, and the latter aims to reduce the difference in the hidden layer
embeddings themselves. These two members are added to the prediction layer
distillation loss (also used by DistilBERT) to form the overall loss function for
training TinyBERT.

2.3 A survey of the ER landscape
As mentioned in Section 2.1, the problem of ER has been studied for a long
time [17]. Naturally, since then, many solutions have been proposed, but
we limit the scope of the current survey to the last few years when ML and
DL methods were employed. We categorize the existing solutions based on
the core technology they used, which is also strongly correlated to when the
solution was published. We will first look at solutions created before the
popularity wave of DL algorithms. Next, we move on to solutions using a
DL architecture, but not a TPLM. Last, we take a look at the ER solutions at
whose core stands a TPLM.

2.3.1 Traditional ML
In this category, we look at one particular solution, Magellan [4]. This had
been the SoA in ER before the increase in popularity of DL architectures.
It is a flexible solution, interfacing easily with all the tools from the Python
data environment (e.g. pandas, NumPy). It implements ready to use blocking
methods, as well as matching methods based on well known ML methods:
Decision Trees (DTs), Random Forest (RF), Support vector machines (SVM),
XGBoost, etc. Features are manually engineered for this method, using
Jaccard Similarity [32], Levenshtein distance [33], cosine similarity [34],
or other classical strategies applied on different n-grams (e.g. 3-grams, 5-
grams). One issue with this approach is that the two data sources being
compared need to have their schemas aligned which can be an issue, especially
when comparing offers promoted by different retailers, each using different
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attributes. Another obvious issue representative of this type of approach is
that it requires a lot of engineering effort to develop the right features to use.

Considering the completeness of this solution and the fact that it was
unanimously recognized as the SoA in subsequent papers, we decided not to
look at more examples from this category.

2.3.2 DL based methods, before Transformers
Most of the solutions in this category belong to the subcategory of RNN-
based architectures. Their popularity does not come as a surprise since RNNs
represented the general paradigm of working with NLP before the advent of
Transformers. These networks are well suited for handling sequences, and
texts are sequences of tokens (words or other types of tokens such as n-grams).
Their power stems from the fact that they can take into account previous tokens
when looking at the current one, enabling the model to establish relations
among them. One issue with RNNs is that they are not able to identify
connections between tokens that are far apart in the sequence. Based on the
RNN idea, other improvements were made to tackle this issue, in the form of
Long Short Term Memory (LSTM) mechanisms and Gated Recurrent Units
(GRUs). In the context of ER, names are sequential as shown in Table 1.2.
Another advantage of using RNNs is that different attributes can be serialized
in the same string when a specification table is available. This enables us to
use unstructured information without the need for schema alignment.

Moreover, RNNs are autoregressive by nature, but language is not. A
token’s neighbours give its context on either side. For example, in the sentence
“I withdrew money from my bank account”, looking at the token “bank”,
we can see that the tokens “money” and “account” both provide relevant
information about the target. Therefore, bidirectionality was added [35],
resulting in Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU).
As seen in Section 2.2, the major drawback of these architectures remains
the fact that they are sequential and, thus, cannot take advantage of hardware
optimized for parallel computations.

The first solution from this category that we discuss is DeepMatcher [5].
This project comes from the same research group as the previous state of the
art, Magellan [4]. In fact the DeepMatcher paper [5] proposes four different
DL solutions for the problem of ER, namely: Smooth Inverse Frequency (SIF),
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RNN, Attention and Hybrid. We will focus our analysis on the Hybrid model,
the most complex, achieving generally better results, which was subsequently
referenced as SoA in DL for ER. The idea behind this architecture is to
combine BiGRUs with an attention mechanism. One major advantage of this
method over Magellan [4] is that the schema of the tables being compared does
not have to be aligned anymore. All the attributes describing one offer can be
concatenated in a sequence and fed to this network. It uses the fastText library
for token embedding. One difficulty in using this model, similar to all the
others using RNNs is the impossibility of using modern hardware to perform
computation in parallel.

The authors of DeepER [36] also focused on an RNN based solution.
Similarly to DeepMatcher [5], the attributes are individually embedded
through the use of RNN. There are also substantial differences. One is the
use of LSTM networks instead of BiGRUs. A second one is that this model
requires schema alignment because it considers all the attributes as separate
sequences of tokens and then performs similarity checking on corresponding
attributes. This limitation should ideally be avoided since we are looking at
comparing catalogues from different retailers which will not adhere to the
same schema. A notable difference is also the use of GloVe word embeddings
instead of using the fastText library. This is relevant, since GloVe [18] focuses
on tokens, whereas fastText [20] focuses on character level embeddings. This
is a trade-off discussed by Mudgal et al., [5]: word level embeddings capture
more meaning but are more sensible to Out of Vocabulary (OOV) words
compared to character level embedding techniques. Ebraheem et al., [36]
thoroughly discuss blocking methods as well, offering a complete pipeline for
ER, but those are out of the scope of the current project.

Hi-EM [37] is another solution based on RNNs. Nevertheless, the
architecture it proposes is quite different from the previous models. Zhao et al.,
[37] did not use any embedding library or pre-computed word embeddings.
Instead, character level embeddings are learned by the model at training time.
Another big idea this paper brings to the table is the use of Knowledge Bases
(KBs) for identifying corresponding columns in different schemas. The central
idea is using KBs published by search engine operators, in this case, Microsoft,
for performing a kind of Named Entity Recognition (NER) and base attribute
mapping and attribute comparison on that information. Because it does not
use any embedding library, all the model needs to be trained from scratch,
limiting the ability to reuse previous work, and requiring larger datasets and
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longer training times.

The last RNN based model we look at is PMM [38], or Product Matching
Model. Li et al., used Convolutional Neural Networks (CNNs) as well for
mapping the interaction between the words of the two different titles being
compared. The idea is to take the word embeddings of the two titles (initialized
by Word2Vec and processed by a BiLSTMs layer) and multiply the matrix
to obtain a matrix of word interaction. A CNN looks at this matrix of
word interaction to extract features to pass to a final Multilayer Perceptron
(MLP) step. The authors describe another component of PMM that also uses
attributes. This other component is quite similar to the one matching the titles
we just discussed, albeit more complicated to consider minor differences in
attributes. The base components still stay the same. We will not go through
this second component in greater detail. Because this model uses Word2Vec
to create word embeddings, it is not able to handle OOV words. Often ER
data contains product model tokens as seen in Table 1.2, which are not likely
to be part of a training vocabulary. Not being able to use such a strong signal
represents a big issue for this model.

Wang et al., [39] introduced a model called CorDEL. In their paper, they
observed a pattern in all the DL solutions for ER, namely that they are all based
on siamese networks [40]. In other words, titles (and attributes) describing an
offer are independently mapped to an embedding space by identical networks.
Then these embeddings are compared, and a similarity score is calculated. In
their paper [39], they make the argument that such a way of performing ER
misses out on some information regarding word-level similarities between the
two offers. Thus, they propose a contrastive approach, looking at the shared
words and the words that separate the two offers for making the decision.
They use the fastText library for word embedding, and they process the inputs
using Feed Forward Neural Networks (FFNNs) with dense connections. This
solution drastically reduces the number of parameters trained in the network
as compared to RNN based solutions like DeepMatcher [5] while showing
performance which is on par with and even exceeds that of the previous SoA.
While it takes into account the contrast between the two offers, this method
misses the context in which the words are used, following a Bag of Words
(BoW) approach. This means that CorDEL would consider the words “flag”
or “cards” in Table 1.2 to be exactly the same regardless of their respective
contexts.
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2.3.3 Solutions based on TPLMs
One of the first ER models to use TPLMs was Ditto [7]. Li et al., leverage the
power of BERT, to which they only add a classification layer which takes as
input the embedding of the “[CLS]” token. This architecture is very similar
to another contemporary work [10], but Ditto adds a few optimizations as
well. Moreover, in the Ditto paper we can find a proof that there was an
issue with the paper redacted by Brunner et al., [10]. Namely, they did not
use a validation set, optimizing their hyperparameters directly on the test set.
Schema alignment, or misalignment thereof, is not an issue for Ditto, or other
subsequent Transformer based solutions, because, as seen with DeepMatcher
[5], all attributes can be concatenated into one long string, which is then
fed to the LM. As mentioned, Ditto [7] can apply a series of optimizations:
leveraging domain knowledge, summarizing long entries, and augmenting
training data. For more details, the reader is referred to the original paper
[7]. The issue with Ditto is that it focuses on pairs, instead of independently
embedding each offer. This means that the model has to be called multiple
times for the same offer depending on the pair in which it is present.

Peeters et al., [41] propose a very similar approach where pairs of offers
are embedded together by a TPLM. Their main contribution stems from the
fact that they emphasize how TPLMs are trained on general corpora of text
from Wikipedia and the news, which is somehow different to what the model
sees in the task of ER for e-commerce. Therefore they propose to further
adapt the LMs to the domain of e-commerce using vast amounts of product
offers data, with the Masked Language Modeling (MLM) objective originally
used in training BERT [26]. As discussed for Ditto, the challenge here is
that the model has to be called multiple times for the same offer, because it’s
embedding is also dependent on the pair to which it belongs.

The creators of eComBERT [42] propose a new training objective, similar
to the one introduced by Sentence-BERT [43]. Instead of training their model
on tuples, they create a triplet where the product name serves as an anchor.
The following two elements are a matching and a non-matching offer for the
product. The objective of the training is to get the matching offer close to
the anchor product in the embedding space while increasing the gap between
the product and the negative example. Compared to the previous solutions,
eComBERT uses a siamese network, being able to reuse the embeddings of
each individual offers. On the other hand, it misses the opportunity to look at
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words belonging to different offers, suffering from the issue that presented by
Wang et al., [39].

JointBERT [8] is another solution that stands out with a different learning
objective than the norm. In this paper, Peeters et al., propose a dual objective
for the model. A classification layer that aims to assign the two offers being
compared to a known GTIN (product) is added. They demonstrated that
this method yields better results when offers present in the test set refer to
products present in the training set. However, it performs poorly on offers
referencing completely new products. Additionally, the Peeters et al., use
interpretability methods 2.2 to demonstrate the pieces of information that their
model considers the most important when making a decision. Although the
model shows improved performance for products whose GTINs it has seen
during training, the performance for new products decreases.

Jain et al., [44] shifted the perspective, looking at ER from an active
learning angle. They laid out the process, including a human in the loop,
who would verify the model’s output (for cases with low confidence) and thus
generate new training data for improving the model. Figure 2.3 also shows this
part of the pipeline by the connection going from the user back to the dataset.
The novelty introduced by the paper stems from the introduction of a sampling
method for looking at the most relevant examples (which is highly desirable
when humans are included in the loop), as well as a way to train a blocker based
on TPLMs. The matcher they used is very similar to what the previous papers
describe. While the other contributions this project introduces are significant
for the field of ER, they are out of the scope of the current project, so we will
not discuss them further.

One of the latest solutions for the problem of ER, as of the time of this
writing, is presented by DAME [45]. Trabelsi et al., based their architecture
on the idea of creating Mixture of Experts (MoE) layer. In other words, a
layer connected at the top balances the suggestions of each expert through an
attention mechanism. The main idea behind this proposal is to take advantage
of all the data available for training ER solutions, independently of the target
domain. Thus, multiple, parallel experts are trained, each specialized in one
type of product and then using this MoE a good generalization comes out of the
diverse perspectives. The paper empirically shows that their solution highly
outperforms Ditto [7] especially when data for training on a specific category
is missing or insufficient for generalization. Even when higher amounts of data
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are available, DAME is either on par or slightly better than its counterpart. To
minimize the impact of fine-tuning multiple LMs in parallel, hence tweaking
a significant number of parameters, the authors use DistilBERT, which is a
lighter version of BERT, as explained in Section 2.2.

Finally, in their most recent paper, Peeters et al., [9] propose a contrastive
method for ER inspired by the success of such approaches [46] proved to have
in the domain of Computer Vision (CV). The contrastive objective comes as a
pretraining step. This method aims to look at all offers within a batch and bring
the ones referencing the same product closer while maximizing the distance
among offers targeting different products within the embedding space. This
project introduces a data sampling as well in order to avoid misleading labels
during this pretraining phase. After this step, the model is fine-tuned with
the usual Tuple Classification objective for predicting if a tuple of offers is
targeting the same product or not.

2.4 Datasets
A critical aspect of research that could not be included in the previous two
sections is the creation of datasets to train and test all of these solutions. Some
of the datasets used were done manually, hindering their size. The WDC
dataset introduced by Peeters et al., [47, 48] introduced a new method of
creating large datasets automatically. Most e-commerce websites annotate
their product pages, adhering to the recommendations of schema.org for
Search Engine Optimization (SEO) purposes. A lot of these annotated pages
contain a GTIN as well, so one can quickly build a dataset by looking for the
same GTIN offered by different vendors. This method of creating a dataset is
an example of distant supervised learning, where the model is trained using
labelled data. However, this data is automatically generated from sources on
the internet. One thing to pay attention to when using this method is that
the labels may not be all the time accurate, GTINs may be absent or wrongly
assigned. Nevertheless, it has been shown [48] that data obtained as such is
good enough for training ER systems. Peeters et al., published a manually
curated golden standard as well for confidently testing the results models.
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Figure 2.6: Evolution of algorithms being used for solving the ER problem

2.5 Summary
We began this chapter by taking a good look at the Transformer architecture
and the LMs based on it. In the second part of the chapter, we focused on
specific solutions to the problem of ER. We saw how TPLMs improved the
SoA for this task, as it has happened for other NLP tasks. Finally, we saw how
distant supervised learning can produce massive ER datasets.

A summary of the reviewed solutions can be found in Table 2.1. Figure 2.6
shows the evolution of ER solutions throughout the years. It is worth
remarking how distinct eras can be identified when looking at ER solutions,
with Transformers dominating the field in recent years.
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Solution Technology Training objective

ML FFNNs RNNs CNNs Transformers Tuple MLM Triplet Contrastive
Magellan
[4]

✓ ✓

DeepMatcher
[5]

✓ ✓

DeepER
[36]

✓ ✓

Hi-EM [37] ✓ ✓
PMM [38] ✓ ✓ ✓
CorDEL
[39]

✓ ✓

Ditto [7] ✓ ✓
Peeters
et al., [41]

✓ ✓ ✓

eComBERT
[42]

✓ ✓ ✓

JointBERT
[8]

✓ ✓

DIAL [44] ✓ ✓
DAME [45] ✓ ✓
R-SupCon
[9]

✓ ✓ ✓

Table 2.1: Analysis of previously proposed solutions from the literature
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Chapter 3

Methods

In this chapter we address the steps taken for answering the research
questions presented in Section 1.2. We discuss here the metric used for
model comparison (Section 3.1), dataset selection / creation and discovery
(Sections 3.2 and 3.3), implemenentation details of two models from SoA
(R-SupCon [9] and Ditto [7]) (Section 3.4), the idea behind our model
(Spring R-SupCon) (Section 3.5), our method for generating lower volume
datasets (Section 3.6) and the effects of using smaller TPLMs with R-SupCon
(Section 3.7).

3.1 Identifying an evaluation metric
As discussed in Section 1.5, identifying an evaluation metric is crucial for
being able to quantify the performance of identified models. In other words,
the evaluation metric is the basis for operationalizing model performance.

Before choosing such a metric we need to understand the kind of model
we are confronted with. In Section 2.1 we understood that the problem of ER
can be described as a binary classification problem where the model receives a
pair of offers, compares them and outputs the probability of the pair belonging
to a “matching” class (or to the “not-matching” class otherwise).

Classification problems have been thoroughly studied in the literature
previously, so there is an abundance of already well established metrics one
can use. On the web∗, one can easily find articles explaining the most popular
∗ https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification
-regression-evaluation-metrics-1ca3e282a2ce

https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce
https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce
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metrics for this task such as: accuracy, precision, recall, Area Under the Curve
(AUC), F1 score, F-beta score.

Metric Advantages Disadvantages
Accuracy Simple Not suitable because of dataset

imbalance.

Precision Easy to correlate with the business
need.

Does not take false negatives into
account.

Recall Easy to correlate with the business
need.

Does not take false positives into
account.

F1-score Represents a good aggregation of
precision and recall.

It doesn’t take into account that
having false negative is preferred
over false positives.

It has been used in all of the studied
solutions from SoA.

AUC Can help us choose a good thresh-
old

Too broad, not well fit to the studied
problem.
Considering the use of softmax
activation in the last layer, the
probabilities are either very high or
very low.

F-beta score Takes both precision and recall into
account.

Introduces an additional hyperpa-
rameter.

Enables the balance of the number
of false positives vs. the number of
false negatives.

It is not used by SoA, so it
makes it difficult to compare the
performance with existing work.

Table 3.1: Analysis of available metrics for classification tasks

Table 3.1 shows a summary of the advantages and disadvantages presented
by various metrics for classification tasks. Looking at the table, we can clearly
see that metrics like accuracy, precision, recall or AUC are not feasible for
the ER problem (at least not as the main metrics). The discussion between
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F1-score and F-beta score becomes more complicated, with strong arguments
for both. For the purpose of the current project, we took the decision to
continue with F1-score as main metric, mainly since it allows easy comparison
with other solutions and it takes into account both false negatives and false
positives.

3.2 Datasets

3.2.1 Open dataset selection
Multiple datasets have been created for testing ER models, each with its
particularities. In this project, we will study three open datasets: abt_buy,
amazon_google and wdc_computers_medium. All three of them have
previously been used to test ER models [7, 9]. Along with the data itself, all
three selected datasets are distributed with a standard train, test, and validation
split, making it easier to reproduce and compare results obtained by different
models.

3.2.2 Proprietary dataset creation
The proprietary dataset is trickier by nature. The host organization cannot
provide a labelled matching dataset, but they store data for many individual
offers from various retailers across the continent. As suggested by the authors
of [48], this can constitute the base for a distant supervised labelled dataset.
Namely, each of these offers identifies the target product by the GTIN, which is
a strong signal for identifying a matching pair, while offers targeting different
GTINs can be considered as non-matching with high confidence. Since this is
a complex process, we dedicated the rest of this subsection to understanding
how the proprietary dataset is created.

Table 3.2 shows the schema of offers as they are registered in the
company’s database. True positives can be inferred using GTIN (product_id)
correlation, but sampling non-matching examples is also required for training
a Deep Neural Network (DNN) model. A few questions still arise: which kind
of products should be selected?, should we use all positive matches?, how do
we select non-matching examples?.
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Field name Field description

offer_id Unique identifier of the offer. An offer represents the listing
of a product on a given retailer’s website.

product_id
Identifier of the product. A product represents the actual
thing being sold, so this ID stays the same across different
retailers.

country The country in which the retailer which proposed the offer
activates.

retail_prod_
name

The name of product as described by the retailer.

price The price at which the product is being sold expressed in the
currency described by the ’currency’ column.

currency The currency in which the price is expressed.

offer_source
The source where the offer originated from. That is different
from the retailer. A retailer can be present in multiple source,
and a source will have multiple retailers.

retailer_name The name of the offering retailer.

metadata
Field containing JSON with additional information such
as: category of the product, images URLs and technical
specification.

Table 3.2: The schema of the offers stored by panprices

A specific category, namely TVs, was chosen to sample data from for the
proprietary dataset. Starting with a list of TVs provided by the company, we
identified all possible matching offers using the product_id. As demonstrated
by previous works [48], product offers sharing the same product_id can be
considered as matching. Thus, a set of positive labels is generated through
this first step.

Next, we have to generate negative labels. The following negative label
generation heuristics are used to ensure the model is trained and evaluated in
a variety of different situations:
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• Pairs that are hard to label as a non-match

• Pairs that are easy to label as a non-match

• Pairs of offers belonging to the same brand that are non-matches

While the process for obtaining the last category is obvious, the other
two categories require further explanations. For identifying the first two
categories, which we named tough_false_matches and easy_false_matches,
respectively, we need a simple method for understanding the difficulty of
matching a pair. To that end, we created a simple Term Frequency - Inverse
Domain Frequency (TF-IDF) model. First, we select all pairs of products
having a Jaccard similarity score of at least 0.7, then a new column is
added to every product representing the TF-IDF encoding of that offer’s title.
Consequently, a cosine similarity score is computed between pairs that passed
the Jaccard similarity filter. If the cosine similarity is larger than 0.66, the TF-
IDF model considers that pair a match. We selected the threshold for Jaccard
Similarity by manually checking how many false negatives and false negatives
are generated for various values. The purpose here is to obtain sufficiently
large pools of each category to be able to create a large dataset in the next step.

The next step consists of comparing the results obtained by this model
to the true labels known by matching offers on the product_id column. The
tool of choice for looking at the comparison between the two sets of labels
is a confusion matrix. Using it, true negatives become easy_false_matches,
false positives become tough_false_matches. Additionally, we can divide
the matching pairs into easy_true_matches (true positives) and tough_true_
matches (false negatives).

We enforced the following quota per category to make sure that the dataset
is not biased towards one of the categories: 5% easy true matches, 5% tough
true matches, 30% tough false matches, 40% same brand false matches, 20%
easy false matches. It is worth noticing how the dataset contains far more
negative examples than positives. Having an unbalanced dataset is a common
trait of ER, and it represents the main reason why accuracy does not represent
a good metric for ER tasks, as discussed in Section 3.1. The python code of
the overall process is presented in Listing A.1. We included both tough and
easy true, respectively false matches, because we want the model to be able
to accurately predict all kinds of pairs. For example, if we only include tough
pairs, there is a risk that the model will learn to focus on subtle differences
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every time, running the risk of mislabeling a lot of fairly obvious matches. We
call this the panprices_tvs dataset.

3.3 Baseline model and data exploration
Having a baseline model to validate assumptions about the data and compare
more complex models against is a common practice in the literature [8, 42].
For simplicity, we selected an already existing baseline model from previous
research projects. The choice for the current project is to implement the Word
co-occurrence model proposed by the authors of JointBERT [8]. This model
works by splitting the text describing an offer into words, then looking at
the words the two compared offers share in common, resulting in the co-
occurrence matrix. Simple machine learning algorithms are then used to try
to fit a prediction function to this matrix. The algorithms are: Bernoulli Naive
Bayes, XGBoost, Random Forest (RF), Decision Tree (DT), Support vector
machines (SVM), Logistic Regression. The full list of hyperparameters used
for these experiments is listed in A.3. A randomized grid search over a defined
hyperparameter space is performed for each of these, and the model best fitting
the validation set is selected.

Model Dataset F1
Baseline abt_buy 0.40
Baseline amazon_google 0.44
Baseline wdc_computers_medium 0.83
Baseline panprices_tvs 0.76

Table 3.3: F1 score of the baseline model on the studied datasets

Table 3.3 presents the results obtained by the baseline model on the studied
datasets. One important takeaway from these results is the difference in
performance between the first two open datasets (abt_buy and amazon_
google) and the third one (wdc_computers_medium) is significantly
high. One hypothesis to support this observation is that the number of words
per offer in the first two datasets is lower than in the third one. Furthermore,
there may be a more significant difference in vocabulary between the train and
test splits for the first two datasets. For the rest of this section we will focus on
testing these hypotheses.
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Further analysis of the data can be performed to explore these ideas. One
could take a look at the global picture (Table 3.4), as well as grasp a more
localized view (Table 3.5). Both validate the proposed hypotheses, shading
light on the main difference between the studied datasets.

Dataset Total
words

Train - Test word split (%) Avg. words per
offer

Common Train
only

Test only Left offer Right
offer

abt_buy 5,144 69% 28% 3% 46 15
amazon_google 2,146 53% 43% 6% 7 7
wdc_computers_medium 17,408 29% 71% 0% 78 73
panprices_tvs 7,810 50% 49% 1% 82 160

Table 3.4: Number of words between the train / test splits for the studied
datasets

(a) Performance by total number of words

(b) Performance by percentage of words that are only present in the test set

Figure 3.1: Influence of the total number of words and the percentage of test
only words on the performance (F1) of the baseline model

Two main things can be concluded by looking at Table 3.4: there are
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substantially more words present in wdc_computers_medium dataset
compared to the other two, and this is as well the only dataset where all the
words being used in the test set are present as well in the train set. In other
words, in the case of the wdc_computers_medium dataset, the model has
more information to base a decision on and it was trained to handle all possible
tokens. The panprices_tvs dataset contains more words as well, and we
can also see here that only a small percentage of the test words were not present
in the training set. These findings explain the large difference in performances
observed in Table 3.3, and are supporting the hypothesis we presented at the
beginning of the section. Figure 3.1 offers a visual representation of our
conclusions regarding the baseline model performance.

To understand the influence of the metrics above on the model’s
performance, a more local view is required. Table 3.5 shows a mislabeled
example from the abt_buy dataset. These two offers represent a match,
describing the same physical product, but the baseline model labels this pair
as non-matching. OOV words are highlighted for interpretation.

Source Text
A panasonic kx-tga450b black 5.8 ghz cordless handset

kxtga450b panasonic kx-tga450b black 5.8 ghz cordless
handset kxtga450b frequency hopping digital spread spec-
trum technology answering system with compatible base unit
call waiting caller id join in/privacy 2-way intercom voice
scramble black finish

B panasonic kx-tga450b cordless handset panasonic
kx-tga450b additional handset for pankxtg4500b

Table 3.5: Mislabeled example from the abt_buy test set. Highlighted words
are not present in the training set. Expected label: match, Baseline model
label: non-match

An obvious issue here is that the model name kx-tga450b represents an
OOV token. Because the model has never seen this token during training, it
can not be considered when comparing the two texts. Practically the model
is trying to predict without considering the OOV words at all. Such a task
(upon eliminating words absent in the train set) becomes impossible even
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for a trained human because the other available words can not constitute a
strong enough basis for making a decision. Therefore, the conclusion that
OOV words are an issue for the baseline model stands and further explains the
improved performance on the dataset where no such words are present (wdc_
computers_medium).

3.4 Implementing the SoA
As discussed in Chapter 2, many solutions have been proposed for the ER
problem. This project focuses on the sub-category of solutions based on
TPLMs, the latest evolution of ER models, which currently represent the SoA.

Specifically, the best results available at the moment of this writing are
presented by the authors of R-SupCon [9]. Thus, this model represents the
target of the SoA implementation.

Peeters et al., [9] made their code available on GitHub. Their repository∗

serves as the basis for the implementation of the model. Nevertheless, to better
understand the process the authors went through, we rewrote and adjusted the
original code. The final source code can be viewed on a separate GitHub
repository †.

The main idea behind contrastive learning is to format the embedding
space so that matching offers come close together. At the same time, offers
presenting different products should be placed far in the embedding space. It
originates in the field of Computer Vision (CV), where it was first devised
as a self-supervised learning method [49]. Images would go through an
augmenting process. The purpose of the algorithm was to bring together
augmentations of the same image, learning how to group similar images in the
embedding space. Later, the possibility of using labels with the contrastive
loss function was introduced [46], instructing the model to group together
images sharing the same label as well as augmentations from the same image.

∗ https://github.com/wbsg-uni-mannheim/contrastive-product-matching
† https://github.com/damianr13/master-thesis-kth

https://github.com/wbsg-uni-mannheim/contrastive-product-matching
https://github.com/damianr13/master-thesis-kth
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(a) Offer embeddings before contrastive pretraining

(b) Offer embeddings after contrastive pretraining

Figure 3.2: How the contrastive pretraining of R-SupCon affects offer
embeddings of offers in the wdc_computers_medium dataset

In the case of ER, e-commerce offers need to be embedded instead of
images. Figure 3.2 shows how the contrastive learning pretraining step
modifies the embedding space. Each point in both charts represents an offer,
and the same colour points represent matching offers. Only a sample of 20
products was selected to create these charts. While it may seem that a few
groups are unnecessarily close to one another, it is worth pointing out that
these charts are obtained after reducing the dimensions of the embeddings
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Figure 3.3: How the embedding of one offer is generated

from 312 to 2, using UMAP ∗, and that a lot more products are present in the
dataset. Even if some clusters of different clusters are close in this 2D space,
we expect that other dimensions serve the purpose of distinguishing them in
the higher order space. Moreover, some of the offers that were not selected in
this sample will cover the white space visible in the upper left corner of the
second sub-figure.

The architecture for obtaining the embedding of one offer is summarized
in Figure 3.3. First the text describing an offer is tokenized and fed to the
TPLM, enclosed in the yellow background in the figure. The TPLM produces
a contextualized embedding for each of the fed tokens. In the next layer
you take the average of the embeddings of all the tokens and we use that
as the embedding of our offer. When a full batch of offers had undergone
this process, we train the model with the contrastive objective to bring close
matching offers in the embedding space.
∗ https://umap-learn.readthedocs.io/en/latest/

https://umap-learn.readthedocs.io/en/latest/
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Items (images in the original works, offers in the case of R-SupCon and
the current project) are individually embedded in the space. However, the final
purpose of the model is to estimate the probability of two different items being
similar. Thus, another step must be performed to obtain similarity results out
of the model. One option is to calculate the distance (for instance, cosine or
euclidean) between two embeddings and compare that to a threshold. Another
option is to perform a second training stage, where a head is added on top of the
siamese architecture, and the whole model is trained using the cross-entropy
loss function. Authors of the original SupCon paper [46], and subsequently,
the authors of R-SupCon [9] opted for the latter.

Figure 3.4 shows the complete training architecture with the classification
head on top of the siamese neural network composed of the contrastive pre-
trained model. Surrounded by the yellow background we have the TPLM
that was pre-trained in the previous step. Similarly to how we did for the
pre-training model, we obtain the embedding of an offer by averaging the
embeddings of the tokens that make it up. In the final step, we concatenate
the two embeddings, with their difference and their element-wise product, to
form the feature vector upon which we base the prediction of whether the pair
should be considered a match or not.

Having built the intuition behind the contrastive loss function, here is the
formula devised by the authors of the original SupCon paper [46]:

Lsup =
∑
i∈I

Li
sup =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)

The first thing to remember is that the formula uses all the offers in one
batch. The loss is calculated by summing up the losses obtained by considering
each offer in the batch an anchor at a time (i.e. i ∈ I). For one anchor, the
loss is obtained by summing up the losses between it and all the other items
belonging to the same cluster (i.e. p ∈ P (i)). Cluster here means a group of
offers referring to the same products, as indicated by the labels. Furthermore,
the loss between an anchor item and a member of its cluster is calculated as the
log of the ratio of the exponential distance between the two embeddings, and
the sum of the exponential distance between the anchor and all the embeddings
outside the cluster (i.e. a ∈ A(i)). The loss is scaled by the anchor’s cluster’s



Methods | 37

Figure 3.4: Siamese architecture with the classifier head on top

size. Since the ratio inside the log function is always sub-unitary, the resulting
loss would be negative. The prevent that, the result is multiplied by −1.

As previously stated, for the model to distinguish between two given offers,
an additional training step must be performed. In this step, two offers are
passed in parallel to the transformer as show in Figure 3.4. The binary cross
entropy loss function is used for training the model to distinguish a tuple of
offers:

L = − 1

N

N∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi)

3.5 Introducing Spring R-SupCon
In the following subsection we focus on what we consider a weakness in R-
SupCon, and propose a way to mitigate it. Next, we present our solution in the
form of Spring R-SupCon. Finally, we provide a graphical intuition into the
problem with R-SupCon, and why our fix addresses it.
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3.5.1 A closer look at R-SupCon
The authors of R-SupCon [9] propose two ways of training the siamese model
with the classifier head on top. The first option they test is to freeze the TPLM
obtained after the pretraining step and use the binary cross-entropy loss to only
train the classifier head that was added on top of the siamese network. The
second idea they experimented with consists of propagating the binary cross-
entropy loss in the whole network and training the weights in the BERT model
alongside the classification head in the second step. The former is introduced
as the frozen version, whilst the latter is presented as the unfrozen version of
the model.

Empirically, they prove that the frozen version vastly outperforms the
unfrozen one on all the studied datasets. The superior performance of the
frozen model is to be expected because of the random initialization of the
head that was added on top of the model. The contrastive learning step had
the purpose of clustering together in the embedding space offers referring to
the same products. Since the head’s weights are randomly initialized, there
is a high probability that offers belonging to the same cluster may be labelled
as non-match or vice-versa. Thus, the randomly initialized head added on top
of the siamese network results in high losses at the beginning of the training
phase. If these high losses are then propagated into BERT, the property of
grouping together similar offers in the embedding space is affected. In other
words, the embedding space gets scrambled by the randomness present in the
head, undoing the benefits of contrastive learning.

The two operational modes used introduced here as frozen and unfrozen,
are widely known as feature extracting and fine tuning, respectively [50]. A
TPLM is said to be used as a feature extractor when its internal weights are
not trained anymore, and the model is only used for embedding a sentence (or
sequence of words). On the other hand, fine-tuning a model to a specific task
means further training the weights inside a model to better fit the final task it is
meant to perform. Generally, given enough resources, we expect fine tuning to
yield better results than feature extracting, which is not the case for R-SupCon.
In this case, the first training step is fine-tuning the model, while the second
step uses it only as a feature extractor.
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3.5.2 From R-SupCon to Spring R-SupCon
The research question this project is trying to answer is then: “Are there any
benefits to fine-tuning the TPLM with the binary cross-entropy loss function
after the contrastive training step?”. The first sub-question that arises is how
to fine-tune the model using the binary cross-entropy loss function. Peeters
et al., [9] empirically show that the unfrozen model is performing poorly, so
we discard this option.

For using the benefits of fine-tuning using the second loss function, this
project proposes adding a third training step after the frozen training performed
by the authors of R-SupCon [9]. This third training step is not a new one, it
is the unfrozen step. The innovation here consists in performing both training
modes one after the other instead of one or the other. The intuition dictates
that since the head will have been fine-tuned by the frozen training step, the
losses will be vastly lower than the ones obtained by directly performing the
unfrozen step. Thus, the risk of scrambling the embeddings space diminishes
drastically while allowing the TPLM to further adapt to the task of estimating
the probability of two given offers to represent a match. We call our model
Spring R-SupCon.

3.5.3 The effects of freezing the TPLM
Figure 3.2 shows how contrastive pre-training of the TPLM clusters together
matching offers. As we explain in Section 3.4, the contrastive pretraining
has to be followed by another phase of tuple classification to train the model.
The Binary Cross Entropy (BCE) loss used for teaching the model how to
distinguish between two offers can be propagated to the TPLM. If the loss
is not propagated to the TPLM and only the head is trained with the tuple
classification objective, the offer embeddings stay the same as in the second
sub-figure (after contrastive pretraining).

On the other hand, if the BCE loss is propagated to the model as well, the
TPLM’s weight will change, resulting in significantly different embeddings.
Figure 3.5 shows how the embeddings are affected if the model is directly
trained with the tuple classification objective, starting with the randomly
initialized head. The advantages of the contrastive learning phase have been
lost, and the offers are no longer clustered according to a matching relation.

In this project we propose a new way of training the model, in which the
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Figure 3.5: Resulting embeddings after training R-SupCon in unfrozen mode
on the wdc_computers_medium dataset

TPLM is initially frozen to allow the classification head first to be pre-trained
for the Tuple Classification task. This phase is then followed by a third training
phase, in which the loss propagates through the entire model, allowing the
TPLM to be fine-tuned to the Tuple Classification task as well. Figure 3.6
shows that not much changed in the embeddings created by the TPLM. This
behaviour was expected since the head is not randomly initialized as was the
case when performing the unfrozen experiment, but fine-tuned to the task.

3.6 Performance with low data volumes
For one of the use cases the host company has, it is not possible to use GTINs
for creating a large dataset in a distant supervised fashion as proposed by
previous research [48]. Instead, datasets must be manually labelled, which
is costly and time-consuming. Therefore, it is interesting to understand how
various models can perform under conditions of low data volumes.
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Figure 3.6: Resulting embeddings after training Spring R-SupCon in frozen
and unfrozen mode subsequently on the wdc_computers_medium dataset

In this project we propose a method of artificially creating lower volume
datasets from larger ones to simulate such environments. Although ER
datasets consist of pairs of offers, it would not suffice to sample those. In a
real-world environment, data arriving at an entity does not consist directly of
pairs of offers, but the offers themselves are stored in a retailer’s database. The
pairs are then created using a blocking algorithm as explained in Chapter 2.

Let us take a concrete example where sampling pairs would create an
inconsistent dataset. Similarly to the problem introduced in Chapter 2, we
consider two data sources A, B. Let m,n ∈ A and x, y ∈ B, and let the
pairs (m,x, 1), (m, y, 0), (n, x, 0), (n, y, 1) ∈ A × B × {0, 1} be the labeled
pairs present in the dataset. A random pair sample can select the following
pairs: (m, y, 0), (n, x, 0). In this case, even though offers m,n, x and y are all
present in the dataset, the matching relationship has been lost. This effect has
significant damage on the contrastive learning step because the algorithm will
try to push apart offers m and x and n and y respectively, since there is no
more a link between them in the dataset.
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Offers should be sampled instead of pairs, and then all pairs composed of
two sampled offers shall be kept. Considering the case above, let us say that
the algorithm samples m,n and x to be kept in the lower volume dataset. In
other words, pairs (m,x, 1), (n, x, 0) will be sampled, keeping the consistency
of the data. In this case, we disregard (m, y, 0) and (n, y, 1) since they contain
a non-selected offer, i.e., an offer that would be unknown in the real-world
scenario.

Furthermore, we need to preserve a ratio of positive/negative matches
similar to the one observed in the full dataset. Thus, after randomly sampling
As ⊂ A, a small sample Bm ⊂ B is drawn out of B in such a way that
∀b ∈ Bm, ∃a ∈ As, such as (a, b, 1) ∈ A×B×{0, 1}. Then we complete the
sample with random elements Br ⊂ B, and the final sample from the second
data source is computed as Bs = Bm ∪ Br.

Listing A.2 presents the python method used for performing the sampling
process described above.

3.7 The question of the model size
The authors of R-SupCon [9] used RoBERTa as the basis for their model.
As seen in Chapter 2, RoBERTa is a large TPLM that holds the SoA in a
range of NLP tasks. Nevertheless, it comes with the downside of hosting
many parameters and requiring powerful resources and long training times. In
the same chapter, we took a look at significantly smaller TPLMs (ALBERT,
TinyBERT) that strive to keep the performance of their larger relatives.

In this section we study the benefits of using a larger TPLM in the context
of ER. For this purpose, we compare the original R-SupCon model based on
RoBERTa against a clone that uses TinyBERT instead.

Table 3.6 shows that the results obtained using TinyBERT are almost on
par with the ones obtained by using RoBERTa. The difference between the
two TPLMs is insignificant for wdc_computers_medium. The results
obtained for the abt_buy dataset are worse when using TinyBERT, while the
results for amazon_google are better than the ones observed when using
RoBERTa.

Table 3.7 shows the resource consumption levels for both RoBERTa and
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Model Dataset RoBERTa ∗ TinyBERT
R-SupCon amazon_google 79.28 84.87
R-SupCon abt_buy 94.29 90.05
R-SupCon wdc_computers_medium 98.50 97.83

Table 3.6: Comparison of F1 scores obtained by using RoBERTa and
TinyBERT inside R-SupCon. Results with ∗ taken from the R-SupCon paper
[9]

Model Metric RoBERTa TinyBERT
R-SupCon Energy consumption (kWh) 5.11 0.66
R-SupCon Time required (h) 36 6

Table 3.7: Comparison of resource consumption observed in training R-
SupCon by using RoBERTa and TinyBERT as the base TPLM. Experiments
ran on GCP, see Chapter 4 for a detailed hardware description

TinyBERT. Training the model starting from TinyBERT requires six times less
time and consumes about eight times less energy than the RoBERTa version.
Therefore, correlating the data in Tables 3.6 and 3.7, we took the decision to
carry on further experiments using TinyBERT.
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Chapter 4

Results and Analysis

In this chapter we present and analyze the results obtained after performing our
experiments. We start by providing an overview of the hardware and software
we used (Section 4.1), then we show how our model compares to the other
SoA models when dealing with low data volumes for cases where GTIN is
not available and we need to rely on manually created datasets (Section 4.2).
Finally, we show how Panprices AB can use current solutions for the TV
category, for which we automatically created a dataset in the previous chapter
(Section 4.3).

4.1 Experimental setup
We carried out all of our experiments on cloud platforms provided by Google
and Oracle. The VM of choice on Google Cloud Platform (GCP) is n1-
highmem-8 with an NVIDIA Tesla K80 GPU, while on Oracle Cloud, a
VM.GPU3.1 instance with an NVIDIA Tesla V100 GPU will be used.

The language of choice for implementing the models studied as part of this
project is Python 3.9, using the PyTorch framework and other well-established
libraries from the data science toolkit: NumPy, pandas, scikit-learn. Data
engineering tasks will be carried out using PySpark.

4.2 Experiments with lower data volumes
One of the use cases discussed with the host company referred to applying
ER solutions when lower volumes of data are available. At the time of this
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writing, the company did not yet have an example dataset, so we applied the
sampling process described in Section 3.6 to reduce the volume of existing
public datasets.

Based on the three open datasets: abt_buy, amazon_google and
wdc_computers_medium nine smaller sized datasets have been generated
corresponding to the following sampling ratios: 0.25, 0.50 and 0.75 applied to
each of the original datasets. To understand the effect of the training set size
on the performance of the model, the size of a dataset has been operationalized
in four ways:

1. Number of offers

2. Number of pairs

3. Number of products

4. Number of matching pairs

Note that all these metrics refer to the size of the training set. The size
of the test set has been unaffected by the sampling technique presented in
Section 3.6. Table 4.1 show the size of the sampled datasets measured by
the four metrics mentioned above.

We used three models to fit the generated data. The first is Ditto [7], which
represented the SoA in TPLM architectures for ER before the R-SupCon’s [9]
publication. The other two are based on the R-SupCon paper. The difference
between them consists of the way the model was trained. The frozen model
is the one presented in the original paper, where the TPLM’s parameters
are frozen during tuple classification training. The Spring R-SupCon model
was trained in the way proposed by the current project in which the tuple
classification training phase is further divided into two parts. During the first,
the model is trained exactly as the frozen variant, while for the second, the
model is trained end-to-end, propagating the loss back into the TPLM.

For the third training phase, we used a learning rate of 1e-6 for 50 epochs.
The hyperparameters used were identified by performing a grid search over a
user-defined space, using the amazon_google dataset.

Figure 4.1 shows the results obtained in the lower data volumes
experiments. The size space can be divided into three categories: very low
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∗

Dataset Sample
ratio

# pairs # offers #
products

#
matching

pairs

amazon_google

0.25 970 669 539 133
0.50 2,495 1,302 991 300
0.75 4,667 2,029 1,448 503
1.00 6,874 2,679 1,835 699

abt_buy

0.25 696 448 347 97
0.50 2,051 910 621 253
0.75 3,789 1,361 840 432
1.00 5,743 1,838 994 616

wdc_computers_medium

0.25 1,033 1,151 560 251
0.50 2,568 2,147 694 603
0.75 4,421 2,943 738 1,006
1.00 6,475 3,498 745 1,410

Table 4.1: Sizes of sampled datasets as shown by the four operationalizations

Model amazon_google abt_buy wdc_computers_medium
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Ditto 59.31 69.02 68.87 69.38 66.66 68.73 79.06 78.00 68.62 75.14 81.54 82.73
R-SupCon 0.00 53.22 75.46 84.87 0.00 0.00 62.04 89.79 8.30 86.33 94.49 97.81
Spring
R-SupCon 28.37 73.19 73.60 90.41 0.00 74.87 84.47 83.23 67.75 87.64 94.47 98.86

Table 4.2: Comparison of the performance (F1) of three ER models on lower
volume datasets

data volumes (left part of the charts) , low data volumes (middle part of the
charts), low to medium data volumes (right part of the charts). Each of the
tested models dominates its category. In other words, the ER solution of
choice is not universal, and a decision should be taken according to the volume
of the data one has available.

Ditto dominates the very low volume category, proving less “data-hungry”
than contrastive based methods. This conclusion is expected because the
contrastive pretraining phase needs many offers to map them in the embedding
space. Otherwise, the value of using it significantly diminishes. Furthermore,
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(a) amazon_google (b) abt_buy (c) wdc_computers_medium

Figure 4.1: Comparison of the performance (F1) of three ER models on lower
volume datasets

because in Ditto, the offers are concatenated and given to the TPLM as one
array of tokens, the model can learn distinguishing factors between two offers
(inter-offer interactions) and use them more efficiently. On the other hand,
R-SupCon uses a siamese network, which means an embedding is obtained
for each offer before comparing them. Thus, R-SupCon cannot directly
compare tokens belonging to the two offers, like a different model name or
manufacturer. A particularly concerning result is the one obtained for the
0.25 sample of the abt_buy dataset. Both of the contrastive learning models
obtain an F1 score of 0 for the given dataset. We explain this by the fact that
the dataset does not contain sufficiently many offers of the same products,
for the contrastive learning’s clustering power to become useful. For such
datasets, a case by case approach is more suitable as demonstrated by Ditto’s
performance.

As the amount of training data increases, the Spring R-SupCon model
becomes better than Ditto. In the charts it can be seen how the Spring R-
SupCon dominates both Ditto and frozen R-SupCon in the low data volumes
category. These results can be explained by the fact that this training scheme
benefits both from the contrastive pretraining and the ability to adapt to pairs
of offers. Although our model still uses the siamese architecture and thus is not
able to pick up slight differences as easy as Ditto, it still enabled the TPLM
to learn differences in a pair through the third learning phase. This ability
gives it a clear advantage over the frozen version of R-SupCon, and it bumps
its performance above Ditto for the second category.

In the third category, the data volumes are high enough for the contrastive
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learning pretraining to matter much more. The model sees enough data during
training time to learn a good enough separation of the embedding space. The
classification head’s task of splitting the embedding space into distinct areas
becomes easier to achieve in this well-clustered space. Further training with
the tuple classification objective in the third phase, where the TPLM is fine-
tuned together with the head, is no longer beneficial. It is worth mentioning
that even though the Spring R-SupCon model does not outperform the frozen
R-SupCon model for this category, it does not affect the performance either.
Thus, it is safe for a user to keep the third training phase because the results
adding it are better or equal to the model that was not trained with it.

4.3 Panprices’ data
As stated in Chapter 1, one of the main objectives of this project is to SoA
solutions on data provided by Panprices AB to solve the company’s issue with
product matching. In Chapter 3, Subsection 3.2.2 describes the process of
transforming the company’s data into a suitable format for training ER models.
This section focuses on analyzing the results obtained for the corresponding
dataset.

Since this analysis makes the subject of an external report directed to the
company, we included more metrics to understand the model’s performance
better. FPR and FNR were added because this is how the company’s
requirements were initially specified. Additionally, precision and recall were
added to convey more details. Table 4.3 show the final results.

Model Dataset F1 FPR FNR Precision Recall
word-cooc panprices_tvs 75.86 5.51 10.81 66.00 89.18

Ditto panprices_tvs 93.24 0.81 6.75 93.24 93.24
R-SupCon panprices_tvs 95.83 0.16 6.75 98.57 93.24

Spring R-SupCon panprices_tvs 95.83 0.16 6.75 98.57 93.24

Table 4.3: Proprietary dataset results

Based on the precision and FPR, it is clear that the model is aggressively
labelling pairs as non-matching. The initial requirement received from the
company was to achieve a FPR lower than 1%, and the model fulfils it with a
good margin. The second requirement was that the FNR should be lower than
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5%. This latter requirement is not satisfied by the current model, so adjusting
the performance of this metric can constitute the basis for further R&D within
the company.
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Chapter 5

Conclusions

This final chapter acts as a retrospective of the work done (Sections 5.1 and
5.3), as well as a look forward into the future to what other ideas may be
explored to improve the performance of ER systems (Section 5.2).

5.1 Summary
This project started with three main objectives: understanding the existing
solutions for ER, implementing and improving the SoA and applying the
gained knowledge to the real-world data provided by the host company. This
section looks at each of them and assesses how they were covered.

We began by understanding the environment around existing ER solutions.
Our work details how TPLMs works and provides a comprehensive list of
SoA solutions available in the literature. More than presenting the different
solutions, we also analysed the trend of technologies being used and compared
key elements like main algorithms and training objectives for the selected
models.

Moving on, we covered R-SupCon’s [9] overall architecture and training
method, with the intent of further understanding what makes it the SoA in e-
commerce ER. We used our understanding to propose the idea behind Spring
R-SupCon and set up a few experiments generated by the need of the host
company to apply ER algorithms in low data volume environments. Our
results show when the proposed model yields better results than the original
method of training R-SupCon. It is also shown that it does not affect cases
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where the performance was not improved either.

Finally, we covered the third objective of applying the gained knowledge to
the problems faced in the real world by the host company. Partly, the need for
performing ER tasks in low data volumes environments is covered as described
above. Even though no data from the company was available at the moment
of this writing, the results obtained on public data constitute a solid base for
the company to apply the knowledge in the future. Moreover, for the second
use case, where GTINs are available, we described a method for creating a
ER dataset. We split the generated dataset into a training set, validation set
and a test set respectively and used it to train the proposed model, yielding
promising results.

We restate the contribution of our work:

• we present Spring R-SupCon, an evolution of R-SupCon that is able
to beat R-SupCon’s performance on low data volume datasets by up to
74.47% F1 score

• Our experiments show that smaller language models like TinyBERT
can perform almost as good as big language models at a fraction of the
training time.

• we introduce a way to produce lower volume datasets from open datasets
to diversify the conditions under which Entity Resolution (ER) models
are tested

5.2 Future work
A possible way of improving the performance of Spring R-Supcon would be to
include offer image data along the textual information. Previous works [51, 52]
have already studied to possibility of using both visual and textual data for
the task of ER. In the context of contrastive learning, we think it would be
useful to separately embed the textual and visual representations of offers and
concatenate them to obtain a higher order dimensional space, thus allowing the
model to use more information when separating distinct offers. A challenge
when it comes to this task is the lack of open datasets that include both visual
and textual information. Wilke et al., [52] overcome this by modifying the
process through which Primpeli et al., [47] created the Web Data Commons
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(WDC) dataset, to acquire product images as well as textual data.

A recent article by another group of researchers at Amazon [53] proposed
Trans-Encoder, a learning scheme in which a bi-encoder and a cross-encoder
can learn from one another through distillation. A bi-encoder is a model that
individually encodes every item available (offer in the case of this project)
and then compares the two embeddings. On the other hand, a cross-encoder
encodes a pair of items (a pair of offers) benefiting from inter-sentence
interactions. From the work of the current project, R-SupCon is a bi-encoder,
while Ditto is a cross-encoder. Therefore, a future project in ER could have
a look at the possibility of making the two architectures interact through the
mutual distillation learning scheme.

As mentioned in Chapter 1 some things like the blocking algorithm
are intentionally left out of the current project due to time limitations.
Nevertheless, blocking is an essential part of the ER pipeline and requires its
investigation. Thus, blocking can represent a good target for a future related
project.

In Chapter 2, we shortly described DIAL [44] among other possible
solutions. One of the most important of DIAL’s particularity is that it describes
an active learning pipeline. In other words, it focuses on the ability of
the model to learn actively by recommending potential matches to a human
labeller and then performing a training phase using the newly acquired data.
This method of using ER models can prove useful when relying on humans
to manually label pairs of offers, as is the second use case of the host
company. DIAL’s matching algorithm is similar to the one proposed in Ditto
[7]. Naturally, one possible future project can focus on including a contrastive
learning approach, similar to the one introduced by R-SupCon [9], in an active
learning ER pipeline.

5.3 Reflections
We have demonstrated the ability of using contrastive learning in the field of
Entity Resolution (ER) for low volume datasets with an improvement of up to
12% F1 score compared to the previous SoA. Our work shows that matching
methods based on small TPLMs have the ability to obtain good results even
in contexts where ER datasets are not easy to create. We further proposed
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a method for sampling existing datasets, to create lower volume instances of
them and we showed our process for generating a dataset for ER, when data
for distant supervised learning is available.
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Appendix A

Code fragments

Listing A.1: Code snippet showing the algorithm for generating a proprietary
dataset

tfidf_results = perform_tfidf_analysis(offers_df)
true_matches = generate_true_pairs(offers_df)

# extract the confusion matrix of the TF-IDF model
categories_dict =

obtain_intermediate_categories(tfidf_results,
true_matches)

same_brand_false_matches =
generate_same_brand_false_matches_from_dataframe(offers_df)

random_false_matches =
generate_random_false_matches_from_dataframe(offers_df)

# remove duplicates from same brand false matches
category

already_known_matches = functools.reduce(lambda a, b:
a.union(b), categories_dict.values())

same_brand_false_matches =
same_brand_false_matches.subtract(already_known_matches)

# remove duplicates from easy false matches category
(easy_false_matches)

already_known_matches =
already_known_matches.union(same_brand_false_matches)
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random_false_matches =
random_false_matches.subtract(already_known_matches)

# add the new two categories to the dictionary
containing the data for all different categories

categories_dict[RANDOM_FALSE_MATCHES_KEY] =
random_false_matches

categories_dict[SAME_BRAND_FALSE_MATCHES_KEY] =
same_brand_false_matches

# drop duplicates
categories_dict = {k: drop_duplicates_textual(v) for k,

v in categories_dict.items()}

# perform sampling and train, test, validation split
train_set, test_set, validate_set =

compose(categories_dict)

Listing A.2: Dataset sampling method applied on a pandas DataFrame
def _sample_data(self, df: DataFrame) -> DataFrame:

# take a sample of left ids
left_ids = pd.Series(df[’left_id’].unique()).sample(

frac=self.config.train_sample_frac)

# apply weights to second datasource offers
# to increase the probability of sampling offers
# involved in many pairs (matching or non-matching)
weighted_df = df[df[’left_id’].isin(left_ids)].copy()
weights = weighted_df[[’left_id’,

’right_id’]].groupby(’right_id’).count().rename(
columns={’left_id’: ’right_weight’})

weighted_df = weighted_df.merge(weights,
left_on=’right_id’, right_index=True)

# for a sampled id in the first datasource sample one
id

# on the right that id is paired with to ensure that
the

# sampled ids are indeed kept
right_paired_ids = weighted_df.groupby(’left_id’,

group_keys=False).apply(
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lambda s: s.sample(1,
weights=weighted_df[’right_weight’])

)[’right_id’].unique()
right_paired_ids = pd.Series(right_paired_ids)

# sample matching ids to ensure preservation of
# negative / positive ratio
right_matching_ids = df[df[’left_id’].isin(left_ids)

& (df[’label’] == 1)][’right_id’] \
.unique()

right_matching_ids = pd.Series(right_matching_ids)

# complete with randomly sampled ids on the right
right_ids = right_matching_ids.sample(

frac=self.config.train_sample_frac)
right_ids = pd.concat([right_ids,

right_paired_ids]).unique()
right_ids = pd.Series(right_ids)

right_all_ids = pd.Series(df[’right_id’].unique())

already_sampled_frac = len(right_ids) /
len(right_all_ids)

right_ids_pool = df[(df[’left_id’].isin(left_ids))
& (~df[’right_id’].isin(right_ids))]
[’right_id’].unique()

right_ids_pool = pd.Series(right_ids_pool)

to_sample = (self.config.train_sample_frac -
already_sampled_frac) * len(right_all_ids) /
len(right_ids_pool)

right_ids = pd.concat([right_ids,
right_ids_pool.sample(frac=to_sample)])

# select pairs where both ids have been sampled
return df[df[’left_id’].isin(left_ids) &

df[’right_id’].isin(right_ids)]

Listing A.3: Hyperparameter space for the Word Co-occurence model
1 {
2 ”classifiers”: [
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3 {
4 ”name”: ”bernoulli”,
5 ”params”: {}
6 },
7 {
8 ”name”: ”xgboost”,
9 ”params”: {

10 ”learning_rate”: [0.1, 0.01, 0.001],
11 ”gamma”: [0.01, 0.1, 0.3, 0.5, 1, 1.5, 2],
12 ”max_depth”: [2, 4, 7, 10],
13 ”colsample_bytree”: [0.3, 0.6, 0.8, 1],
14 ”subsample”: [0.2, 0.4, 0.5, 0.6, 0.7],
15 ”reg_alpha”: [0, 0.5, 1],
16 ”reg_lambda”: [1, 1.5, 2, 3, 4.5],
17 ”min_child_weight”: [1, 3, 5, 7],
18 ”n_estimators”: [100],
19 ”n_jobs”: [4]
20 }
21 },
22 {
23 ”name”: ”random_forest”,
24 ”params”: {
25 ”n_estimators”: [
26 100
27 ],
28 ”max_features”: [
29 ”sqrt”,
30 ”log2”,
31 null
32 ],
33 ”max_depth”: [
34 2,
35 4,
36 5,
37 10
38 ],
39 ”min_samples_split”: [
40 2,
41 5,
42 10,
43 20
44 ],
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45 ”min_samples_leaf”: [
46 1,
47 2,
48 4,
49 8
50 ],
51 ”class_weight”: [
52 null,
53 ”balanced_subsample”
54 ],
55 ”n_jobs”: [
56 4
57 ]
58 }
59 },
60 {
61 ”name”: ”decision_tree”,
62 ”params”: {
63 ”max_features”: [”sqrt”, ”log2”, null],
64 ”max_depth”: [2, 4, 7, 10],
65 ”min_samples_split”: [2, 5, 10, 20],
66 ”min_samples_leaf”: [1, 2, 4, 8],
67 ”class_weight”: [null, ”balanced”]
68 }
69 },
70 {
71 ”name”: ”linear_svc”,
72 ”params”: {
73 ”C”: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
74 ”class_weight”: [null, ”balanced”],
75 ”dual”: [false],
76 ”max_iter”: [10000]
77 }
78 },
79 {
80 ”name”: ”logistic_regression”,
81 ”params”: {
82 ”C”: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
83 ”class_weight”: [null, ”balanced”],
84 ”solver”: [”liblinear”]
85 }
86 }
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87 ]
88 }
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Appendix B

Managing infrastructure with Ter-
raform

Using a cloud platform such as Oracle Cloud Platform comes with the
advantage that we only pay for what resources we are using, without needing
to buy the required hardware upfront. For research projects this brings a lot of
flexibility and helps us better manage costs.

One issue we encountered while working on the current project is that
Oracle keeps their GPUs occupied if they are attached to an instance even if
that instance is shut down. In other words, even if no experiments are being
performed, while the instance still exists we are being billed for the time the
GPU stays attached.

Naturally, the solution is to destroy the instance on which we run the
experiments after each use instead of shutting it down. We want to be able
to do that, without having to reconfigure the VM every time we launch new
experiments. To do so, we can keep the boot storage of the machine, and use
that when creating a new instance to continue working from where we left off.
Another good practice is to keep a separate block volume where we keep the
data and code for the project, such as we don’t need to move everything in case
we want to run the experiments on a VM with a different shape, potentially
incompatible with the boot volume.

Having to manually recreate the instance every time still represents an
annoying overhead to getting started with our work. This is where Terraform ∗

∗ https://www.terraform.io/

https://www.terraform.io/
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comes in handy. It is a tool for managing infrastructure as code across multiple
suppliers including Oracle, Google or Amazon.

To automate the deployment of infrastructure we created the script
presented in Listing B.1. Some information has been hidden and is marked
by surrounding it with < > for example the id of the used boot volume is
represented here as<Boot_Volume_Id>. Essential here are the source_details
where we specify that we need the instance to be base on the existing boot
volume and the option preserve_boot_volume that ensures the boot volume
will outlive the instance.

Listing B.1: Terraform script for launching an instance
provider ”oci” {}

resource ”oci_core_instance” ”workspace_instance” {
agent_config {
...

}
availability_config {
recovery_action = ”RESTORE_INSTANCE”

}
availability_domain = <AD>
compartment_id = <Compartment_Id>
create_vnic_details {
assign_private_dns_record = ”true”
assign_public_ip = ”true”
subnet_id = <Subnet_Id>

}
display_name = ”MasterThesisWorkspace”
instance_options {
are_legacy_imds_endpoints_disabled = ”false”

}
metadata = {
”ssh_authorized_keys” = <SSH_Key>

}
shape = ”VM.GPU3.1”
source_details {
source_id = <Boot_Volume_Id>
source_type = ”bootVolume”

}
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preserve_boot_volume = true
}

resource ”oci_core_volume_attachment”
”master_storage_attachement” {

attachment_type = ”iscsi”
instance_id = oci_core_instance.workspace_instance.id
volume_id = <Block_Volume_Id>

}

Moreover we would like the instance to automatically stop if no more
work is required of it. This allows us to let it run experiments over night
without being afraid that we might pay extra for hours when no actual work
was performed. To do so, we can use a monitoring alarm that triggers a
cloud function. The alarm would watch the CPU utilization of the instance
as an indicator of whether the machine is being used or not. After an hour
of inactivity it triggers a cloud function that calls the terraform destroy action
on the stack created with the script above. This alarm can be defined as well
using terraform as seen in Listing B.2.

Listing B.2: Alarm for destroying the instance when it is not being used

resource ”oci_monitoring_alarm” ”associated_alarm” {
compartment_id = <Compartment_Id>
destinations = [<Topic_Id>]
display_name = ”MasterThesisWorkspaceWatchdog”
is_enabled = true
metric_compartment_id = <Compartment_Id>
namespace = ”oci_computeagent”
query = ”CpuUtilization[1h]{resourceId =

\”${oci_core_instance.workspace_instance.id}\”}.max()
<= 5”

severity = ”Critical”

message_format = ”PRETTY_JSON”
}
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Appendix C

Reproducibility across VMs us-
ing docker

For the scope of this project, experiments were run at times on different
hardware, across Oracle and Google Cloud. Even when different VMs, of
different shapes, were used we still wanted to keep consistent result across
different runs. The first step for achieving this is of course seeding all the
random generators with the same number, but that was not enough. We needed
a way to ensure that the environment in which experiments are run is the same
every time. For this purpose, we encapsulated out project in a docker instance,
with the help of the Dockerfile script presented in Listing C.1

Listing C.1: Dockerfile used for consistency across different environments
FROM nvidia/cuda:11.4.0-base-ubuntu20.04

ENV TZ=Europe/Stockholm
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime &&

echo $TZ > /etc/timezone

RUN apt-get update && apt-get install -y python3.9
python3-pip

RUN ln -s /usr/bin/python3.9 /usr/bin/python

# upgrade pip
RUN python -m pip -q install pip --upgrade

COPY ./requirements.txt
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/home/root/thesis/requirements.txt
WORKDIR /home/root/thesis
RUN ls
RUN python -m pip install -r requirements.txt

COPY . /home/root/thesis
RUN python setup.py install

ENV WANDB_LOG_MODEL=true

CMD python -m src.main --debug
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