
SIAMBERT: Siamese Bert-based Code Search

Francisco J. Peña†, Angel Luis Gonzalez†, Sepideh Pashami‡, Ahmad Al-Shishtawy‡, Amir H. Payberah†‡
†KTH Royal Institute of Technology, Stockholm, Sweden
‡ RISE Research Institutes of Sweden, Stockholm, Sweden

†{frape,algon,payberah}@kth.se ‡{sepideh.pashami,ahmad.al-shishtawy}@ri.se

Abstract— Code Search is a practical tool that helps devel-
opers navigate growing source code repositories by connecting
natural language queries with code snippets. Platforms such as
StackOverflow resolve coding questions and answers; however,
they cannot perform a semantic search through the code.
Moreover, poorly documented code adds more complexity to
search for code snippets in repositories. To tackle this challenge,
this paper presents SIAMBERT, a BERT-based model that gets
the question in natural language and returns relevant code
snippets. The SIAMBERT architecture consists of two stages,
where the first stage, inspired by Siamese Neural Network,
returns the top K relevant code snippets to the input questions,
and the second stage ranks the given snippets by the first stage.
The experiments show that SIAMBERT outperforms non-BERT-
based models having improvements that range from 12% to
39% on the Recall@1 metric and improves the inference time
performance, making it 15x faster than standard BERT models.

I. INTRODUCTION

In recent years, there has been an explosion in the amount
of source code available on platforms like GitHub or GitLab.
Code availability benefits software developers as they can
read and execute source code from other projects. Moreover,
software developers can benefit from open source projects by
reusing parts of the code and including them in their projects.
However, finding which part of the project contains proper
code is a complex problem.

Consider a scenario where Alice, a software developer,
wants to know how to create a file and write to it. She
goes to Q&A websites like StackOverflow and writes “How
do I create a file and write to it?”. If she is lucky, she
will find an answer based on similar questions that other
users have asked in the past. An answer to her query is
possible if other users have posted their queries using the
same wording. Figure 1 (on its top part) illustrates this, where
we can see the top result for our example query. However,
if she writes the same question on a code hosting website
like GitHub, she would struggle to obtain an answer to her
query because natural language does not directly match the
source code. This problem is aggravated if the source code
lacks documentation. On the bottom part of Figure 1, we can
see that even though the top result matches the words of our
query, it does not help the developer to implement the code.

Models like Bidirectional Encoder Representations from
Transformers (BERT) [10] can be successfully applied to
solve the code search problem. Several BERT-base mod-
els [28, 12, 7] attempt to solve this problem by producing
code embeddings. These models usually create pairs of

Fig. 1: Example of a question on StackOverflow. The code
of its accepted answer and the result of searching for that
sentence on GitHub. The latter references code unrelated to
the answer but contains some of the words in the query.

queries and code snippets in the dataset to calculate their
similarity. Nevertheless, this process is slow and can become
performance bottlenecks for large datasets. To overcome this
problem, this paper presents SIAMBERT, which uses BERT
to embed developers’ queries and code snippets. Developers,
then, can use SIAMBERT to search for code snippets by
expressing the question in natural language. To this end,
SIAMBERT follows two stages: (i) first, it uses a code
embedding model, inspired by Siamese Neural Network,
trained on a triple-loss function [29] to select the best K
candidates, and (ii) then it uses the code similarity model to
re-rank the K candidates according to the query.

We evaluate the SIAMBERT’s prediction using Top-N
metrics. Our results show that SIAMBERT outperforms other
state-of-the-art code embedding models in ranking predic-
tion. We also evaluate our model in terms of time execution,
showing that it outperforms code similarity models by be-
ing 15x faster without compromising the prediction power.
Moreover, we demonstrate the robustness of our model by
rephrasing queries and showing that it still holds as the top
performer.

II. BACKGROUND

A. Embedding representation

Word embedding is a vectorization representation ap-
proach that maps words into vectors such that similar

words get close vectors in the new space. For exam-
ple, the word connect can be represented by the vec-
tor ⟨0.2, 3,−1.5⟩, the word join can be represented by
the vector ⟨0.3, 3,−1.0⟩, and the word method can be
represented by the vector ⟨6,−1.2, 8⟩. In this illustrative
example, we can see that the vectors for the words connect
and join are close to each other in the space (i.e.,√
(0.2− 0.3)2 + (3− 3)2 + (−1.5 + 1.0)2 ∼ 0.5) because

their words hold similar meanings, while vectors of words
with different meanings, such as method will be fur-
ther apart (i.e.,

√
(0.2− 6)2 + (3 + 1.2)2 + (−1.5− 8)2 ∼

11.89).
Similar to words, sentences can also be encoded into

vectorial representations. For instance, the code presented
in the top part of Figure 1 can be encoded into the vector
⟨2.7, 0.1,−0.8⟩. Traditionally, sentences are encoded into
vectors by aggregating the word vectors together [24]; how-
ever, this has the drawback that the order of the words in
the sentence is lost, resulting in inaccurate representations.
Recurrent Neural Networks (RNNs), such as Long Short-
Term Memory (LSTM) [15] are one of the first code search
models that use sentence embedding, such as [12]. They
can generate vector representations for sentences in which
the information about the order of the words is preserved.
However, RNNs present two major drawbacks: they cannot
capture relations between words in long sentences, and
training them is slow since words have to be fed into them
one at a time, which prevents them from benefiting from
parallel computing [30].

B. BERT and Sentence-BERT

In recent years, transformers have shown superior perfor-
mance in Natural Language Processing (NLP) tasks [32].
They can capture relations between words in long sentences,
word embeddings hold information about each word’s con-
text, and they can be trained in parallel, as they do not require
each word to be input as a sequence. BERT is a language
model based on the transformer architecture that has achieved
state-of-the-art performance in multiple language modeling
tasks [10]. BERT is pre-trained on a large corpus of text on
two tasks: Masked Language Modeling (MML), where 15%
of the words in a sentence are masked and BERT has to
predict them from the context, and Next Sentence Prediction
(NSP), where two sentences are given and BERT has two
predict if the second sentence follows the first one. After pre-
training, BERT can be fined-tuned to other tasks on smaller
datasets.

The success of BERT and its good results applied in
various fields of NLP is sometimes overshadowed when used
in text extraction tasks, mainly when applied to large corpora.
The main problem is that BERT’s base architecture requires
pairing an input query with each document in the corpus,
generating performance problems [21]. However, many vari-
ants of BERT have emerged to improve its performance
issue. For example, Sentence-BERT (SBERT) [26] is a model
that addresses the latency problems by generating a single
embedding vector for an entire sentence using max or mean

pooling to embed all the words in the sentence. Unlike
BERT, which needs to receive two sentences for tasks such as
sentence similarity, SBERT uses a Siamese Neural Network
(SNN) architecture [6] to receive each sentence individually
for the parallel BERT module. This architectural difference
results in a significant improvement in performance at the
inference stage.

Suppose we have a group of sentences, and for each new
sentence, we want to obtain the most similar one in our
collection. There are two ways to do this with BERT. The
first way is to input each sentence separately to BERT and
obtain a sentence embedding from the [CLS] token or by
mean pooling. Reimers and Gurevych [26] have shown that
the embeddings obtained this way do not help calculate the
semantic similarity of sentences. The second way is to input
the two sentences simultaneously (details on how to do this
are explained in Section IV-A.1.a). This implies calculating
similarity values between the new sentence and each of
the sentences in the dataset every time a new sentence is
provided. With SBERT, we can precompute the embeddings
of all the sentences in the dataset, and upon getting a new
sentence, we only need to calculate the embedding of the
new sentence and calculate its similarity with the rest of
the embeddings in the dataset. Although the improvement
in inference time is remarkable when using code embedding
models for code similarity models, there is a significant loss
in prediction quality [21].

C. UNIF

Embedding Unification (UNIF) [7] is a supervised ex-
tension of the Neural Code Search (NCS) [28] that uses
two embedded matrices and an attention mechanism. Both
code and description are embedded with their matrices, and
then the cosine similarity of both embeddings is calculated.
The embedding and attention parameters are tuned during
the training process to maximize the similarity between a
code snippet and its description. The advantages of this
proposed model are that it outperforms previous state-of-
the-art approaches by using a simpler model than other deep
learning models, such as Deep Code Search (DeepCS) [12].

III. METHODOLOGY

The general idea of SIAMBERT is as follows: after get-
ting the input query, first, SIAMBERT transforms it into an
embedding vector and compares it with the pre-calculated
embedding vectors of existing code. After selecting K sim-
ilar existing codes, it applies a code similarity algorithm to
sort them based on similarity to the query.

Figure 2 presents the multi-stage architecture of our
SIAMBERT. In the pre-selection stage, a code embedding
model obtains K representative candidates, taking advantage
of the efficiency of this architecture to search for candidates
in large code repositories. The embedded coded snippets are
stored in a database. Thus, it is only necessary to embed the
new query and calculate the cosine similarity between the
query vector and the stored vectors at the inference time.

Re-ranking stageCandidate pre-selection stage

Query

Code
repository

Code embedding
model

Code embedding
model

Query
embedding

Code
embeddings

0.92
0.87
0.34
0.23
0.12
0.09

Best K code
candidates

Query

Code similarity
modelCosine

similarity

0.95
0.91

Similarity between the query
and all the code snippets

Similarity between
the query and the

K candidates

Fig. 2: Multi-stage architecture.

The code similarity model sorts the K candidates to obtain
a final ranking in the re-ranking stage. Note that the code
similarity model does not produce embeddings but directly
calculates the similarity between a query and a code snippet.

We can use various models in the pre-selection stage. One
of the models we implement is UNIF-SNN, which is inspired
by UNIF [7]. This model embeds both description and code
tokens to the same vector space. The motivation behind this
idea is that using the same vector space could allow the
model to learn the semantics of words used in code snippets
and descriptions or queries. To this end, we feed both the
code and description to an SNN consisting of an embedding
layer and an attention layer. Experiments in Section IV show
that using an SNN improves the prediction performance of
UNIF.

We also extend UNIF-SNN by using a triplet loss function,
as presented in [26], to train the model. Inspired by [26],
we fine-tune UNIF-SNN using the triplet loss function
to learn source code methods embedding and description
embeddings. Our goal is to make the embedding such
that the distance between a description embedding and its
corresponding code embedding is small, while the distance
between a description and a non-matching code is large. To
form a triplet, we choose a query as an anchor and two code
snippets as positive and negative. The positive code snippet
contains the functionality described in the query, while the
negative one has different functionality. Given the anchor,
positive, and negative embeddings (denoted by a, p, and n,
respectively), we define the triplet loss L(a, p, n) as:

L(a, p, n) = max(d(a, p)− d(a, n) + α, 0), (1)

where d(x, y) measures the distance between x and y, and α
is the margin that ensures the positive code snippet is closer
to the anchor than the negative code snippet. We can consider
different distance metrics for d, such as the Euclidean and
Cosine distances.

To construct a triplet, we first choose a description ran-
domly from the dataset as an anchor and then select its
corresponding code snippet as positive and a random code
snippet as negative for the anchor accordingly. As Figure 3
shows, the triplet loss function consists of three instances
of the same code embedding model, sharing the weights.
However, in practice, we use only one single instance of the

code embedding model with three different input channels to
adhere to the triplet structure. First, to train the model, we
tokenize each method in the triplet (anchor, positive, and
negative) and give them as input to the code embedding
model to compute the features. We then use a pooling layer
to aggregate the set of features that the code embedding
model computes for each token to obtain a single fixed-
length vector representing the given method. Finally, we use
the embedding of the anchor, positive, and negative methods
(i.e., a, p, and n, respectively) to compute the triplet loss
L(a, p, n).

L(a, p, n)

pa n

PoolingPooling Pooling

Code emb.
model

Code emb.
model

Code emb.
model

Positive
Code

Query Negative
Code

Fig. 3: Triplet loss function.

IV. EVALUATION

This section will evaluate our model in different tasks and
compare its performance against state-of-the-art baselines.

A. Experimental setup

We conduct all the experiments on a single machine
running Ubuntu 18.04. The machine has four Nvidia RTX
2070 GPUs, a 12-core AMD Ryzen Threadripper 2920X
CPU, 128 GBs of RAM, and 500 GBs of SSD storage. We
implement all models using TensorFlow [1] and Keras [8],

which are packaged and deployed using Docker [23]. For the
loading and configuration of BERT-based models, we used
the HuggingFace transformers framework [33].

To evaluate our approach, we use a subset of the dataset
proposed in [12] containing 600k + 500 (training + test
sets) Java methods organized in tuples and containing four
pieces of information 〈method name, API sequence, tokens,
description 〉. We use the dataset from Java projects hosted on
GitHub, which have documented methods and were created
between August 2008 and June 2016. The method body
has also been tokenized, as detailed in [12]. We discard the
method names and API sequences as we are only interested
in matching code snippets with descriptions.

1) Baselines: We fine-tune all the baselines and
SIAMBERT to predict if a given description matches a code
snippet.

a) BERT: For BERT we give the input of the descrip-
tion and the code in the following way:
[CLS] <CODE> [SEP] <DESC.> [SEP] [PAD]

where [CLS] is a token that BERT expects to receive at
the beginning of each pair of sentences, [SEP] is a token
used to separate sentences, and it is placed at the end of each
sentence, and [PAD] is a padding token (see [10]).

b) RoBERTa: Robustly Optimized BERT Pretraining
Approach (RoBERTa) is a language model that has the same
architecture as BERT, but it is pre-trained with more data,
dynamic masking, and without the NSP task [22]. We feed
RoBERTa the data using the same input format as with
BERT.

c) SBERT and SRoBERTa:: SBERT and Sentence-
RoBERTa (SRoBERTa) are modifications of BERT and
RoBERTa that use SNN to learn embeddings to capture the
semantic similarity of sentences [26]. Equally to [26], we
perform experiments using the SNN along with BERT and
RoBERTa.

d) UNIF: The code embedding model is described in
Section II-C.

2) Metrics: To measure the performance of the code
search models, we use the Recall@N metric [9], which
is widely used in information retrieval and recommender
systems [14, 31]. Recall@N calculates the number of hits
or true positives among the entire test set as follows:

Recall@N =
#hits

|T |
(2)

where |T | is the number of elements in the test set.
3) Evaluation procedure: To evaluate the models, we

iterate over the test set, generate an embedding for each
description, calculate the similarity with |T | code snippets
embeddings and extract the ranking of the correct snippet.
Based on this ranking, we calculate the Recall@N. In all
our experiments, we used |T | = 500. We train all the
models with learning rates between 4 − e5 and 1e − 6.
The experiments show that larger learning rates like 1e− 4
negatively impact BERT models. We also evaluated different
triplet margin values in the range [0.2 − 0.6] and saved the
best results.

B. Results
Here, we present the results.
1) Ranking prediction: In the first set of experiments, we

compare the ranking prediction of SIAMBERT and the rest of
the baselines. Table I shows the results of our experiments.
Our goal is to reach the same prediction performance as
BERT in a fraction of the time, so in the Rec@N columns,
we show the absolute value for the Recall@N accompanied
by the percentage of BERT’s performance that other models
were able to reach. We can see that our model UNIF-SNN
is the best code embedding model for code search. It can
consistently outperform SBERT, SRoBERTa, and UNIF.

Our experiments confirm that the code similarity models
outperform code embedding models in code search tasks in
other text retrieval tasks [21]. However, the high inference
time in these models makes them unfeasible to use in
production environments. For this reason, we combine code
embedding models with code similarity models to reduce
latency and minimize the impact on the output quality.
We achieve the best performance when combining code
similarity with our proposed code embedding model UNIF-
SNN.

Table I shows all three SIAMBERT consistently outperform
the rest of the baselines, with SIAMBERT-UNIF-SNN having
the best performance overall. The four SIAMBERT models
are approximately 15x faster than BERT. The improvement
produced by using code embedding models and then using
code similarity models (in this case, BERT) to re-rank
the candidates shows that the re-ranking done by BERT
consistently improves the order of the candidates. In other
words, code similarity models are good at selecting the
best candidates. The fact that we can achieve a prediction
performance almost as good as BERT (98% in the worst
case) shows that code embedding models do an excellent
job at discarding bad candidates. We also have improvements
between 12% and 39% on Recall@1 compared to non-BERT
models. Our multi-stage architecture exploits this fact to
make predictions virtually as good as the BERT predictions
15-times faster.

2) Ranking prediction with rephrasing: To validate the
robustness of our models, we modified 41 descriptions from
the test set and ran the experiments to compare the per-
formance of these sentences against their original versions.
Table III shows that BERT outperforms all the code embed-
ding models, and all the multi-stage models outperform the
code embedding models. The results obtained by BERT are
maintained or even improved by the multi-stage models.

In Table II, we present some rephrasing examples that we
give to the SIAMBERT-SRoBERTa model, which has the best
rephrasing performance in this experiment. The rank column
shows the number of code snippets with a better rank than
the ground truth. For example, if the rank is 0, the model
returns the correct snippet at the first position for that query.
If the rank is 4, then four code snippets got a better rank
than the correct code, which was fifth.

For instance, examples 83 and 329 got a better new rank
(moves from second to the first position) with the rephrase

Model Rec@1 Rec@3 Rec@5 Time Speed

BERT 0.63 0.83 0.86 17m 30s – –

SBERT 0.49 (78%) 0.71 (86%) 0.77 (90%) 2m 2s 9x
SRoBERTa 0.46 (73%) 0.66 (80%) 0.74 (86%) 42s 25x
UNIF 0.47 (75%) 0.66 (80%) 0.74 (86%) 36s 29x
UNIF-SNN 0.57 (90%) 0.73 (88%) 0.80 (93%) 1m 07s 16x
SIAMBERT-SBERT 0.64 (102%) 0.81 (98%) 0.83 (97%) 1m 14s 14x
SIAMBERT-SRoBERTa 0.62 (98%) 0.79 (95%) 0.82 (95%) 1m 13s 14x
SIAMBERT-UNIF 0.64 (102%) 0.79 (95%) 0.83 (97%) 1m 9s 15x
SIAMBERT-UNIF-SNN 0.64 (102%) 0.81 (98%) 0.84 (98%) 1m 10s 15x

TABLE I: Recall@N performance of all the models executed with 500 code-description pairs from the test set.

query, which contains the original sentence’s semantic mean-
ing but fewer words. Example 5 got a worse ranking even
when both original and rephrased sentences are very similar.
In example 153, the ranking has worsened significantly with
the new sentence, an example of a poorly detailed query.
The word “java” probably made this search more difficult,
as it is pretty generic and may not be a common word in the
training set method description.

V. RELATED WORK

Code clustering is a helpful unsupervised task that gives
an overview of source code repositories in a fast and inexpen-
sive way, given that no labeled data is necessary. Hägglund
et al. [13] present a work similar to ours because they also
use the triplet loss function based on an anchor, positive, and
negative samples to learn the source code embeddings. Other
clustering methods include [27] and [19].

Code summarization is the task of creating descriptive
summaries from source code snippets to help developers un-
derstand the functionality of the source code. Alon et al. [3]
present the code2seq model, which encodes each Abstract
Syntax Tree (AST) path with its values as a vector, and
uses the average of all paths as the decoder’s start state.
The decoder generates an output sequence while attending
over the encoded paths. Attention is used to select the
relevant paths while decoding. code2seq directly uses paths
in the AST for end-to-end generation of sequences. Liang
and Zhu [20] introduce Code-RNN, which encodes different
source code segments into vectors. An RNN then uses these
vectors to generate code summaries. A known problem with
RNNs is that long-term dependencies are often not captured.
Feng et al. [11] attempt to overcome the long-dependency
problem with their model called Fret. Fret is composed of
two encoders and a decoder. The first encoder, which acts
as a reinforcer, captures the code’s functionality based on
method calls. The second encoder is a pre-trained BERT
that takes the code tokens as an input and the functionality
embeddings from the first encoder. The outputs of both
embeddings are given to a decoder that generates the code
summaries.

Code clone detection is the task of finding duplicate code
among a corpora of code. Detecting code clones has multiple
benefits, such as reducing the code maintenance or avoiding
having the cloned copies in the train and test set of a machine
learning dataset. Allamanis [2], and Kang, Bissyandé, and

Lo [18] generate code embeddings to detect code clones
beyond using an exact text match.

Method name prediction involves predicting the name
of a method or function to give a developer essential in-
formation about the method’s functionality. Alon et al. [4]
introduce code2vec, a method to predict method names that
decomposes the AST into a collection of paths and learns
the representation for each path. Alon et al. claim these
representations can be used for multiple tasks, including
code retrieval, captioning, classification, and tagging or clone
detection. Other models to predict method names include
[25].

Code search, as we described in Section I is the task
of matching natural language descriptions with their cor-
responding code snippets. We describe three code search
models published recently. Gu, Zhang, and Kim [12] present
the DeepCS model, which learns code embeddings by fusing
the resulting vectors of three neural networks: two RNNs
and a multi-layer perceptron that process method names,
API sequences, and code tokens, respectively. Description
embeddings are learned using an RNN, and a triplet loss
function based on cosine similarity is used to bring the code
and description vectors closer in the latent space. Sachdev
et al. [28] introduce the NCS model, which transforms code
and description tokens into embeddings using the fastText
library [5]. An average of the token embeddings is used
to create the description embedding. The code embedding
is created by using a TF-IDF weighted average in which
the weights are learned to maximize the cosine similarity
between the code and description embeddings. The UNIF
model presented by Cambronero et al. in [7] is similar to
the NCS model, but it differs in that the token embeddings
are not taken from fastText; instead, they are learned by
the model. For the description, the token embeddings are
averaged while an attention mechanism is used for the
code. Note that none of these models use transformer-based
architecture and therefore suffer from the long-dependency
problem and their produced embeddings lack contextual
information.

Pre-trained models. Recently, variants of the BERT
model have been designed to create context-rich code em-
beddings [11, 17, 16]. They mainly use the same encoding
architecture as BERT but differ in the pre-training tasks and
the data used to train them.

Id Original
rank

New
rank

Original Rephrased

83 0 0 return the canonical path of this file how to get canonical path of the given
file

329 1 0 generate a random int as a token how to get a random integer
73 1 0 turn array of bytes into string represent-

ing each byte as unsigned hex number
how to transform list bytes into string
hexadecimal representation

5 0 17 pause processing at the socket how to stop socket processing
153 2 223 get an xml representation of this object from java object to xml
144 0 1 set the maximum allowed number of

threads
how to define max threads

15 0 16 do a form post method call how to perform a http post request

TABLE II: Example of the ranking of descriptions and its paraphrased version with the SIAMBERT -SRoBERTa (SIAMBERT-
SRoBERTa) model.

Model Original Rephrased

Rec@1 Rec@3 Rec@5 Rec@1 Rec@3 Rec@5

BERT 0.70 0.97 0.97 0.51 0.68 0.78

SRoBERTa 0.58 0.75 0.85 0.39 0.56 0.68
UNIF 0.53 0.85 0.90 0.29 0.53 0.63
UNIF-SNN 0.70 0.82 0.90 0.43 0.63 0.70
SIAMBERT-SRoBERTa 0.75 0.95 0.95 0.53 0.73 0.75
SIAMBERT-UNIF 0.78 0.92 0.95 0.53 0.70 0.73
SIAMBERT-UNIF-SNN 0.78 0.95 0.95 0.53 0.73 0.75

TABLE III: Recall@N performance with 41 selected queries and their rephrased versions, with 500 code snippets

VI. CONCLUSIONS

In this paper, we have exploited the speed and ability
to discard bad candidates of code embedding models and
combined them with the ability to select the best candidates
of the code similarity models to produce a model 15-times
faster and without sacrificing the performance of the code
similarity models.

The results presented in Section IV suggest that code
embedding models are good at discarding bad candidates but
underperform in selecting the best candidates. On the other
hand, code similarity models like BERT and RoBERTa have
an excellent ability to discard bad candidates and select the
best candidates at the expense of large response times. The
experiments show that SIAMBERT outperforms non-BERT-
based models having improvements that range from 12%
to 39% on the Recall@1 metric. Our model SIAMBERT
combines the advantages of both models to reduce the
inference time without compromising prediction quality.

We introduced a new model called UNIF-SNN, which
combines the simplicity of the UNIF with a Siamese neural
network architecture. Our experiments show that it is the best
code embedding model for the task of code search.

We also studied the robustness of the models, testing
them with sentences from outside their test set. Although all
models show a drop in performance with the new sentences,
which could be mitigated by training them with more data,
code similarity models maintain their performance with the
multi-stage architecture.

REFERENCES

[1] Martín Abadi et al. “{TensorFlow}: A System for
{Large-Scale} Machine Learning”. In: 12th USENIX
symposium on operating systems design and imple-
mentation (OSDI 16). 2016, pp. 265–283.

[2] Miltiadis Allamanis. “The adverse effects of code
duplication in machine learning models of code”.
In: Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. 2019,
pp. 143–153.

[3] Uri Alon et al. “code2seq: Generating sequences from
structured representations of code”. In: arXiv preprint
arXiv:1808.01400 (2018).

[4] Uri Alon et al. “code2vec: Learning distributed rep-
resentations of code”. In: Proceedings of the ACM on
Programming Languages 3.POPL (2019), pp. 1–29.

[5] Piotr Bojanowski et al. “Enriching word vectors with
subword information”. In: Transactions of the associ-
ation for computational linguistics 5 (2017), pp. 135–
146.

[6] Jane Bromley et al. “Signature verification using a
"siamese" time delay neural network”. In: Advances
in neural information processing systems 6 (1993).

[7] Jose Cambronero et al. “When deep learning met code
search”. In: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering. 2019, pp. 964–974.

[8] François Chollet et al. Keras. https://keras.io.
2015.

[9] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin.
“Performance of recommender algorithms on top-n
recommendation tasks”. In: Proceedings of the fourth
ACM conference on Recommender systems. 2010,
pp. 39–46.

[10] Jacob Devlin et al. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In:
arXiv preprint arXiv:1810.04805 (2018).

[11] Zhangyin Feng et al. “Codebert: A pre-trained model
for programming and natural languages”. In: arXiv
preprint arXiv:2002.08155 (2020).

[12] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim.
“Deep code search”. In: 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE).
IEEE. 2018, pp. 933–944.

[13] Marcus Hägglund et al. “COCLUBERT: Clustering
Machine Learning Source Code”. In: 2021 20th IEEE
International Conference on Machine Learning and
Applications (ICMLA). IEEE. 2021, pp. 151–158.

[14] Jonathan L Herlocker et al. “Evaluating collaborative
filtering recommender systems”. In: ACM Transac-
tions on Information Systems (TOIS) 22.1 (2004),
pp. 5–53.

[15] Sepp Hochreiter and Jürgen Schmidhuber. “Long
Short-Term Memory”. In: Neural Computation 9.8
(Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI:
10 . 1162 / neco . 1997 . 9 . 8 . 1735. eprint:
https://direct.mit.edu/neco/article-
pdf/ 9/ 8/1735 /813796 /neco. 1997. 9.
8.1735.pdf. URL: https://doi.org/10.
1162/neco.1997.9.8.1735.

[16] Aditya Kanade et al. “Learning and evaluating con-
textual embedding of source code”. In: International
Conference on Machine Learning. PMLR. 2020,
pp. 5110–5121.

[17] Aditya Kanade et al. “Pre-trained contextual embed-
ding of source code”. In: (2019).

[18] Hong Jin Kang, Tegawendé F Bissyandé, and David
Lo. “Assessing the generalizability of code2vec to-
ken embeddings”. In: 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE). IEEE. 2019, pp. 1–12.

[19] Adrian Kuhn, Stéphane Ducasse, and Tudor Gîrba.
“Semantic clustering: Identifying topics in source
code”. In: Information and software technology 49.3
(2007), pp. 230–243.

[20] Yuding Liang and Kenny Zhu. “Automatic generation
of text descriptive comments for code blocks”. In:
Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 32. 1. 2018.

[21] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates.
“Pretrained transformers for text ranking: Bert and
beyond”. In: Synthesis Lectures on Human Language
Technologies 14.4 (2021), pp. 1–325.

[22] Yinhan Liu et al. “Roberta: A robustly opti-
mized bert pretraining approach”. In: arXiv preprint
arXiv:1907.11692 (2019).

[23] Dirk Merkel et al. “Docker: lightweight linux contain-
ers for consistent development and deployment”. In:
Linux journal 2014.239 (2014), p. 2.

[24] Tomas Mikolov et al. “Efficient estimation of word
representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[25] Veselin Raychev, Martin Vechev, and Andreas Krause.
“Predicting program properties from" big code"”. In:
ACM SIGPLAN Notices 50.1 (2015), pp. 111–124.

[26] Nils Reimers and Iryna Gurevych. “Sentence-bert:
Sentence embeddings using siamese bert-networks”.
In: arXiv preprint arXiv:1908.10084 (2019).

[27] Dimitris Rousidis and Christos Tjortjis. “Clustering
data retrieved from Java source code to support soft-
ware maintenance: A case study”. In: Ninth European
Conference on Software Maintenance and Reengineer-
ing. IEEE. 2005, pp. 276–279.

[28] Saksham Sachdev et al. “Retrieval on source code: a
neural code search”. In: Proceedings of the 2nd ACM
SIGPLAN International Workshop on Machine Learn-
ing and Programming Languages. 2018, pp. 31–41.

[29] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. “Facenet: A unified embedding for face recog-
nition and clustering”. In: Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. 2015, pp. 815–823.

[30] Alex Sherstinsky. “Fundamentals of Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory
(LSTM) Network”. In: CoRR abs/1808.03314 (2018).
arXiv: 1808.03314. URL: http://arxiv.org/
abs/1808.03314.

[31] Daniel Valcarce et al. “On the robustness and dis-
criminative power of information retrieval metrics
for top-N recommendation”. In: Proceedings of the
12th ACM conference on recommender systems. 2018,
pp. 260–268.

[32] Ashish Vaswani et al. “Attention is all you need”. In:
Advances in neural information processing systems 30
(2017).

[33] Thomas Wolf et al. “Transformers: State-of-the-art
natural language processing”. In: Proceedings of the
2020 conference on empirical methods in natural
language processing: system demonstrations. 2020,
pp. 38–45.

