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Abstract

Abstract

In the digital era, users have, more than at any point in history, a large amount

of products or services to choose from. Recommender systems help to overcome

this problem by suggesting which products or services to consume based on the

users’ past behavior along with additional information about users, products

and services. For the most part, however, they have done this in a context-

insensitive way. Yet it is clear that a knowledge of the context in which a user

intends to consume a product or service is desirable to ensure that the recom-

mended products and services match the intended context.

Context-Aware Recommender Systems incorporate contextual information in

order to make recommendations that take into account both the users’ prefer-

ences and his/her current contextual situation. However, there are problems in

building such recommender systems: most of the time, contextual information

is not available; when it is available, it is limited to a very small number of

predefined variables; human intervention is required to define what contextual

variables there will be; and many other possible contextual variables are left

out. Given that users sometimes express their context while writing reviews

about consumption of a product or service, user-generated reviews present

themselves as a source to extract contextual information.

In this thesis, we research the problem of how to make contextual recommen-

dations without the need to pre-define what context is. We mine the contextual

information from user-generated reviews in an unsupervised way. We present

Rich-Context, an unsupervised context-driven recommender system that ex-

tracts contextual information out of reviews in order to make recommenda-

tions. By using natural language processing techniques such as part-of-speech

tagging, text classification and topic modeling, Rich-Context is able to success-

fully extract the contextual information out of the reviews.

Experimental results on multiple publicly-available, sparse, real-world datasets

from different domains show that Rich-Context has better performance in both

rating and ranking prediction tasks compared to several state-of-the-art algo-

rithms, including six Context-Aware Recommender Systems, with the advan-

tage that no contextual keywords or other variables need to be pre-defined.

Additionally, since contextual recommendations are often cold-start recommen-

dations, we performed experiments with users that had no previous ratings,

again outperforming all of the state-of-the-art recommenders.
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Chapter 1

Introduction

1.1 Motivation and Background

With the arrival of the digital era, users are faced with an ever greater choice

of products and services. The number of products and services (items) in many

cases exceeds the processing power of a person and the time spent evaluating

every single option makes the selection task unfeasible. Recommender systems

help users overcome this problem by gathering information from diverse data

sources in order to suggest from among the available items those that match

the users’ preferences or goals.

Recommender systems are traditionally classified by the source of information

they use. By this perspective, there are two main types of recommender sys-

tems: content-based and collaborative-filtering. Content-based systems use in-

formation that describes the items —both the candidate items and those items

that the user likes— and creates recommendations based on comparing these

descriptions. Different to content-based systems, collaborative-filtering systems

do not in general use descriptions of the users or items, but instead they use in-

formation about the interaction between users and items. This interaction may

be found explicitly in the form of ratings, likes/dislikes, etc. or implicitly in the

form of clicks, plays, etc. Recommendations are created from regularities in the

interaction data. It is often an advantage of collaborative-filtering approaches

over content-based approaches that they do not require item descriptions since

explicit item descriptions are not always available.

In this work we research how to make a recommender system that incorporates

1



1. INTRODUCTION 1.1 Motivation and Background

contextual information to satisfy the user’s goals. We refer to context as “The
circumstances in which the user consumed or will consume the item and which can
influence how the user perceives the item”. Context might include, for example,

the time of day, the weather, other people with whom the item was consumed,

and so on. Since context can alter a user’s perception of an item, knowing a

user’s preference in the form of user-item interactions is not enough to make

accurate recommendations. It can be crucial to record and use the circum-

stances of that interaction when making recommendations if we hope to satisfy

the user’s goals.

Recommenders that incorporate contextual information into their models are

called Context-Aware Recommender Systems (CARS). These recommenders

gather contextual information in order to make recommendations that are

suited not only to their users’ tastes and preferences but also to their context.

Variables such as time of the day and companions are considered in order to im-

prove the recommendations. However, as pointed out by (Pagano et al. 2016),

most CARS consider a user’s current context when making a recommendation,

whereas it often makes more sense to consider the user’s future or desired con-

text to align the recommendations not to the current context, but to the context

in which the user is planning to be when consuming the recommended item.

Pagano et al. refer to such recommenders as Context-Driven Recommender

Systems (2016).

Furthermore, there are several problems with current CARS. One of the major

problems is not about the models per se, but about the assumptions that they

make regarding the data. Datasets that contain explicit contextual information

are quite rare in the real-world and obtaining explicit contextual information

through user studies can be quite expensive. In addition, systems that do collect

explicit contextual information are usually limited to a small set of contextual

dimensions —typically companion and purpose of the trip for hotel datasets—

and those contextual dimensions usually contain a small set of values (e.g. the

purpose might be business or leisure, and the companions might be solo, signif-

icant other or family for the mentioned hotel datasets).

The problem here is that in the real world, there are many more contextual

situations that can influence our perception of a product or service. For in-

stance, our perception of a restaurant might change if we intend to use it as

a take-away rather than eat-in, we might prefer a certain hotel because it is

pet-friendly, we prefer certain bars to watch a football game, and we would

2



1. INTRODUCTION 1.1 Motivation and Background

choose a restaurant that has access ramps when we go with a member of our

family who has walking disabilities. By predefining and limiting the amount of

contextual dimensions and values, we are in fact losing valuable information

that can be used to make better predictions.

Another big problem with current CARS is that they are faced with the problem

of sparsity. The larger the amount of contextual dimensions incorporated into

a dataset, the more sparse it will be. In some cases, the contextual information

instead of helping to make better predictions does the contrary, as there are

not enough records in some specific contextual situations for the algorithms to

make a correct inference.

On the other hand, in recent years, user-generated reviews have started to be-

come available as an additional source of explicit interaction information be-

sides ratings and likes/dislikes. They come in the form of unstructured text

and have been proven useful to improve the prediction performance of rec-

ommender systems. The incorporation of user-generated reviews into recom-

mender systems is not without challenge since the reviews are typically free

text and therefore may contain a mix of useful and useless information. The

challenge is then to correctly extract the useful information while discarding

the rest.

Review-based recommender systems deal with the problem of exploiting the

information contained in user-generated reviews in order to boost the recom-

mendation performance. They mine useful information from reviews by us-

ing different natural language processing techniques ranging from heuristic ap-

proaches to stochastic models. By doing so, they are able to identify features

such as the aspects that compose the items or the sentiment that users have

towards the items.

We strive to produce a better recommender by unifying the two areas of re-

search that deal with recommenders based on user reviews and CARS. Our goal

is to design a recommender capable of making context-driven recommendations

that does not require contextual keywords, is able to handle sparse datasets and

can work well with real-world data. This goal can be accomplished by creating

context-rich datasets through the exploitation of the information contained in

the users’ reviews. To achieve this we design and evaluate a new recommender

system called Rich-Context.

3



1. INTRODUCTION 1.2 Contributions

1.2 Contributions

In this work we present three main contributions. We also list some more spe-

cific contributions derived from the main ones.

• We design a recommender system capable of making context-driven recom-
mendations without the need to pre-define what context is (Chapter 3): The

main contribution of our research is that, with the help of reviews gen-

erated by users, we are able to make context-driven recommendations

without the use of pre-defined keywords or variables that define what

context is. To the best of our knowledge, Rich-Context is the first rec-

ommender system able to do so. This has the advantage that no expert

knowledge is required and could potentially be extended to other domains

outside context-driven recommendations. Rich-Context also works well

with sparse and large datasets, something that, as we will see in Chapter

2, has been a major problem for current CARS. Derived from this contri-

bution there are two specific contributions:

– We present a new way to represent contextual information (Chapter 3):
Traditionally, contextual information has always been represented

using variables with finite domains, often binary variables. By using

topic models, we are able to represent reviews as vectors of topic as-

signments. By identifying which topics contain contextual informa-

tion, we are able to relate reviews to certain contextual situations,

but instead of using binary values we use real-valued weights in the

range [0, 1]. This allows the possibility of assigning the importance of

a contextual situation within a review.

– We show how to use contextual information as side-information using
Factorization Machines to make recommendations (Chapter 3): After

evaluating several algorithms that support side-information besides

the traditional user-item-rating triplets, we show that Factorization

Machines (Rendle 2010) are ideal since they deal well with sparse

datasets, have a running time linear in the number of contextual

dimensions and can support real-valued side information for contex-

tual dimensions, where several algorithms only support binary values

(see Chapter 3).

• We demonstrate better rating and ranking prediction performance than other

4
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state-of-the-art recommender systems, including several CARS (Chapter 6):
Rich-Context outperforms several state-of-the-art recommenders includ-

ing six CARS after testing it on multiple publicly available, real world

datasets and using a publicly available third-party recommender systems

evaluation tool. This brings transparency and confidence into our results.

Derived from this contribution there are two more specific contributions:

– We design a new methodology for offline ranking evaluation of review-
based context-driven recommender systems (Chapter 6): We designed

a new offline methodology to evaluate the performance of context-

driven recommender systems. This methodology is especially impor-

tant as it helps us simulate the desired context of users, which is

not available in offline experiments, therefore it is not mandatory

to do surveys or online experiments (which are expensive) in order

to estimate the performance of the recommender. In this methodol-

ogy we simulate the user’s context by taking one record composed

of user-item-rating-review, transform the given review into a contex-

tual vector, use that vector to predict the ratings for all of the unseen

items for that user and then take the Top-N items.

– We demonstrate better performance than other state-of-the-art recom-
mender systems for brand-new users (Chapter 6): We also evaluated

Rich-Context taking users from the test set who had zero ratings in

the training set; we call them brand-new users. Brand-new users

are common visitors of websites where absolutely no information is

known about them. We show that, for this type of user, Rich-Context

has superior performance than all of the evaluated state-of-the-art

algorithms across all of the datasets.

• We design a method for extracting contextual information from reviews in an
unsupervised way (Chapters 3 and 5): Based on a property of the reviews

written by users (discussed in Chapters 3 and 4), we are able to extract

contextual information out of the reviews using unsupervised learning

with the help of topic modeling algorithms. Topic modeling helps us to

unveil what is being discussed in the reviews and, by distinguishing be-

tween different types of reviews, we are able to differentiate between

contextual information and non-contextual information. As mentioned

before, this context extraction process is unsupervised and does not re-

quire expert knowledge. Derived from this contribution there are two
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more specific contributions:

– We propose a methodology to select the best topic modeling algorithm
to extract contextual information (Chapter 5): Given the wide range

of available topic modeling algorithms, it was necessary to select the

algorithm that produced the best topic models that we would use to

produce recommendations. We designed a methodology to follow

in order to select not only the best algorithm, but also the data that

should be given to it.

– We introduce new metrics to measure the quality of topic models in
terms of context-richness (Chapter 5): In order to evaluate the quality

of the contextual information that we extract from the reviews, we

design metrics to measure the context-richness of a topic model.

– We improved a methodology for classifying reviews into specific and
generic (Chapter 4): With the purpose of extracting the contextual

information out of the reviews, we improve on the methodology pro-

posed by (Bauman & Tuzhilin 2014) to distinguish between specific

and generic reviews. By exploring new features, testing out several

classification algorithms and applying resampling techniques we im-

prove the performance of the review classifier.

We would also like to highlight the fact that there were no assumptions made

regarding the data when evaluating Rich-Context. We did not use synthetic

datasets or assume that structured contextual information was available or

keywords were available to give such contextual information. We evaluated

Rich-Context using multiple sparse, publicly available, real-world datasets from

different domains (hotels and restaurants) and the evaluation was conducted

using the third-party tool RiVaL1 (Said & Bellogín 2014). This brings confi-

dence and transparency to our results as the datasets can be used by someone

else to compare their approaches against Rich-Context and, by using RiVaL, the

evaluations will be conducted in the same way (using the same number of folds,

splitting strategies, shuffling, etc).

We published two papers from the work reported in this dissertation. The first

paper, titled “Recommending from Experience” (Peña & Bridge 2017), was pub-

lished in the recommender systems track at the 30th Florida Artificial Intelli-

gence Research Society Conference. The second paper, titled “Unsupervised

1https://github.com/recommenders/rival
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Context-Driven Recommendations Based On User Reviews” (Peña 2017), was

published in the Doctoral Symposium at the 11th ACM Conference on Recom-

mender Systems.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 gives an introduction to recommender systems and reviews current

approaches to building recommender systems that can exploit user-generated

reviews and also CARS. After reviewing the literature, common drawbacks are

identified unveiling the gaps in which we can make contributions.

Chapter 3 presents an overview of how recommendations are produced by Rich-

Context. We explain how, by distinguishing between two types of reviews, we

are able to extract contextual information from them. We also explain how

Rich-Context is able to produce recommendations using the contextual infor-

mation.

In Chapter 4 we give a detailed explanation of how the reviews are separated

using a classifier and the techniques we use to improve the classification accu-

racy. We show that by using Natural Language Processing techniques we are

able to distinguish between the types of reviews.

Chapter 5 explains how using an unsupervised machine learning technique

called topic modeling we were able to mine contextual information out of the

reviews to be incorporated in the recommendation process. We show how by

using certain types of words, better contextual information can be obtained and

how the selection of the topic modeling algorithm is crucial to obtain reliable

contextual information.

In Chapter 6 we evaluate Rich-Context and compare it against several state-

of-the-art recommenders. We show that Rich-Context is able to outperform all

of the other recommenders in multiple datasets for both rating prediction and

ranking prediction tasks. We also evaluate Rich-Context in scenarios where

there are no previous ratings available for users, in other words for users that

are brand-new to the system. Under these conditions, again Rich-Context shows

better performance than the other recommenders.
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Finally, Chapter 7 concludes with a summary of the main contributions of this

thesis and we discuss directions for future work.
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Chapter 2

State of the Art

Recommender systems have come a long way since the early approaches that

simply used a dataset of ratings to make predictions of a user’s ratings for an un-

seen item. Developments stem from the fact that there are now richer datasets

that include more information than just the ratings, and also the demand from

users to create recommenders that are not only able to recommend new items,

but also model their goals or temporal preferences.

The presence of websites such as Amazon.com, Yelp.com, TripAdvisor.com and

others have enriched the ratings dataset with reviews. These reviews, made by

consumers, often offer explanations of why a user gave a certain rating to an

item. Including these reviews into the recommendation models can help boost

the recommender accuracy because more information is available to model the

users’ preferences (Chen et al. 2015).

Equally, we have witnessed the arrival of recommender systems that model the

user’s current context in order to make recommendations that are not only tai-

lored to the user but also to the situation surrounding the user. These type

of recommenders, called Context-Aware Recommender Systems (CARS), have

made it possible to improve the accuracy of certain recommender systems (Ado-

mavicius & Tuzhilin 2015).

In this chapter we review the works related to context-driven recommender

systems based on user reviews. We divide the works into three: CARS, unsu-

pervised review-based approaches, and works that combine these two.
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2.1 Context-Aware Recommender Systems

In many real-world situations, context can influence how a person perceives a

product or service. For instance, it is important to know the purpose of travel at

the time of recommending a hotel, as a good hotel for children or pets may be

uncomfortable for someone who travels there to attend a conference. We can

find similar examples in other types of businesses: a restaurant that turns out to

be great to celebrate the birthday of a six year old can be a failure for a wedding

anniversary or even more a wedding proposal. Similarly, a recommendation of

a movie to watch with friends may be not the most appropriate to watch with

the grandparents.

Defining what context is is not a simple task. The definition of context can vary

depending on the discipline where it is used. For instance, (Bazire & Brézil-

lon 2005) analyse 150 definitions of context across different fields. Neverthe-

less, with the goal of stating our definition of context, we explore the work

of (Adomavicius & Tuzhilin 2015). Specifically, we briefly describe the classi-

fications provided in (Adomavicius & Tuzhilin 2015) and then we frame our

recommender system within one of the classifications they provide.

Adomavicius & Tuzhilin claim that there are two important aspects to context:

what is known about the context (fully observable, partially observable or un-

observable) and how the context changes over time (static or dynamic) (Ado-

mavicius & Tuzhilin 2015). Based on these two aspects, a classification of CARS

is offered in which there are four classes: representational approach (context:

static, fully observable), incomplete-information approach (context: static, par-

tially observable), latent approach (context: static, unobservable), dynamic ap-

proach (context: dynamic, various observability).

In our work, the knowledge that we have about the context is unobservable:

it is not explicitly available but it is inferred from the reviews that users write

about product or services. In our work, the context information is also static.

Therefore, our recommender system can be classified as a latent approach. It is

worth clarifying, as is done also in (Adomavicius & Tuzhilin 2015), that this is

not to be confused with a latent factors approach such as matrix factorization.

In a matrix factorization model, the latent factors are directly associated with

each user and item, In our case however, contextual latent variables do not

describe users or item.
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One major advantage that latent approaches like ours have over representa-

tional approaches is that they do not assume that the context is represented by

a predefined set of contextual attributes. By definition, havng predefined con-

textual attributes implies that the relevant contextual information needs to be

identified and acquired well ahead of time in order to make recommendations

(Adomavicius & Tuzhilin 2015). This represents a major problem with most

representational approaches, since most real-world datasets do not come with

contextual information. As we will see later in this Chapter, many representa-

tional approaches (Karatzoglou et al. 2010, Baltrunas et al. 2011, Unger et al.

2016, Zheng et al. 2013, Zheng, Mobasher & Burke 2014) try to circumvent

this by using synthetically generated datasets, or data that comes from surveys

or user studies, which can be quite different to real-world data.

Adomavicius & Tuzhilin note that, for each different domain, the relevance of

the contextual variables changes and it is therefore necessary to have an expert

who defines which variables are relevant (Adomavicius & Tuzhilin 2015). In our

approach no expertise about the domain is necessary as the latent contextual

variables are learned in an unsupervised fashion by the recommendation model

— as we explain in Chapters 3 and 5.

For us, a definition of context within the framework of recommender systems

is “The circumstances in which the user consumed or will consume the item and
which can influence how the user perceives the item”. Many recommender sys-

tems have focused on making accurate recommendations based on data from

users and items (Adomavicius & Tuzhilin 2015), ignoring contextual informa-

tion. However, for some types of items, contextual information is of great value

and incorporating it will lead to more accurate recommendations.

Traditional recommender systems use a function Pred (often learned from

data) to estimate ratings:

Pred : User × Item→ Rating (2.1)

where Pred is a function that depends on a user and an item that has not been

yet rated by that user. This is also known as the 2D approach to recommenda-

tions (Adomavicius & Tuzhilin 2015).

Ratings can also be modeled as a function of the known contextual information.
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The rating-based representational approach to CARS is defined as:

Pred : User × Item× Context→ Rating (2.2)

There can be more than one contextual dimension. For instance, when rec-

ommending a restaurant, we can have several types of contextual information,

such as the time, companion and the purpose. So different recommendations

will be obtained when the context is Sunday brunch with friends, compared to

a weekday working lunch with colleagues.

Pred : User × Item× Time× Companion× Purpose→ Rating (2.3)

We can generalize the above as:

Pred : User × Item× C1 . . .× C|C| → Rating (2.4)

where each Ci is a contextual dimension. In this case, we have |C| contextual

dimensions, thus having a |C|+ 2 dimensional problem.

In what has become a widely accepted classification, Adomavicius & Tuzhilin

divide CARS into three main approaches (2015): context pre-filtering, context

post-filtering and context modeling. In context pre-filtering and context post-

filtering, non-context aware recommender systems are used, but a pre- or post-

filtering task is added in order to ensure that the recommended items match

the desired context. In the contextual modeling approach, the context infor-

mation is incorporated into the model. This of course has several advantages

as the interactions between the contextual dimensions, the users and items are

modeled with all of the information being used simultaneously.

In early work, most of the proposed recommenders took either a pre-filtering

or post-filtering approach, but in recent years most of the research has turned

into the contextual modeling approach. The problem with pre-filtering and

pos-filtering approaches is that they actually ignore the contextual information

when producing recommendations (Unger et al. 2016). In this way, those types

of recommenders miss out on the interactions between users, items and con-

text. The pre-filtering approach has additional problems such as the sparsity

introduced by filtering out certain interactions from the dataset before training

the model (Karatzoglou et al. 2010, Chen & Chen 2015).
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Contextual modeling approaches directly incorporate the contextual informa-

tion into the model (Unger et al. 2016). Our own work takes this approach.

For this reason, in this review of the state-of-the-art, we focus on the contex-

tual modeling approaches and classify them into three: matrix factorization,

neighbourhood-based, and probabilistic approaches.

2.1.1 Matrix factorization approaches

Collaborative filtering methods try to predict the rating a user would give to an

item based on the ratings of other users (Adomavicius & Tuzhilin 2005). They

are able to produce recommendations without the need for information other

than the ratings. This is especially useful when there is no other information

available, such as item descriptions or user demographic information (Koren &

Bell 2015). Collaborative filtering methods have proven to be a suitable alter-

native to content-based methods, and their good performance has established

them as a state-of-the-art reference (Aggarwal 2016).

Matrix factorization is a very popular collaborative filtering method that uses

dimensionality reduction techniques to fill the missing entries of a rating matrix

R. They do so by transforming both users and items to the same latent factor

space of dimensionality l. The goal of this transformation is to model user-item

interactions as an inner product in that factor space (Koren & Bell 2015).

In a basic matrix factorization model, the ratings matrix R|U |×|I|, where U is

the set of users and I is the set of items, is approximated by multiplying two

factorized matrices P|U |×l and Q|I|×l, such that:

R ≈ PQ> (2.5)

The rating that user u would give to item i can be predicted then by taking u’s

latent features vector pu and multiplying it by i’s latent features vector qi, as

follows:

r̂u,i = puqi (2.6)

The lower dimensional matrices are learned by optimizing a cost function. Sev-

eral different optimization techniques and cost functions have been proposed.
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But in this section we will explore some approaches that make use of matrix

factorization in order to produce context-aware recommendations.

2.1.1.1 Multiverse Recommendation

Multiverse Recommendation is presented in (Karatzoglou et al. 2010).

Goal The goal is to find a straightforward way of integrating contextual infor-

mation into a recommendation model.

Contribution This is achieved by using Tensor Factorization, a |C|-
dimensional generalization of the bi-dimensional Matrix Factorization model.

By adding regularization to the Tensor Factorization model, Karatzoglou et al.

are able to adapt it to the collaborative filtering case and the model supports

multiple contextual dimensions. Results using three datasets show that Mul-

tiverse Recommendation is able to beat a non-contextual Matrix Factorization

Model.

Differences with other approaches Other approaches that use Matrix Fac-

torization, such as (Xiong et al. 2010) and (Koren 2009), support only one con-

textual dimension. In the case of (Xiong et al. 2010) and (Koren 2009), that

dimension is time. Multiverse Recommendation differs because it can support

multiple contextual dimensions.

Notation The Multiverse Recommendation model uses the following nota-

tion:

Model In Multiverse Recommendation, a tensor is decomposed into a set of

matrices and a small core tensor. Assuming for simplicity that there is only

one contextual dimension, such as time, the ratings tensor is defined as Y ∈
Y |U |×|I|×|K|, where |U | is the number of users, |I| is the number of items and

|K| is the number of conditions that the contextual dimension can have. For

instance, we could have four conditions: “morning”, “noon”, “afternoon” and

“night”. The ratings are given in a 5 star scale with Y ∈ {0, . . . , 5}|U |×|I|×|K|,
where 0 indicates that the user did not rate an item.
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Table 2.1: Notation of Multiverse recommendation.

Symbol Description

u A user
i An item
k A contextual condition
r̂u,i,k The predicted rating that user u would give to item i under the contextual condition k
U A set of users
I A set of items
K A set of contextual conditions
Y The user-item-context ratings tensor
T A latent features central tensor
P The latent features user matrix
Q The latent features item matrix
S The latent features context matrix
lU The number of latent factors of P
lI The number of latent factors of Q
lK The number of latent factors of S

To factorize the tensor Y , a technique called High Order Singular Value De-

composition (HOSVD) (Lathauwer et al. 2000) is used. In HOSVD the tensor is

decomposed into three matrices P|U |×lU , Q|I|×lI and S|K|×lK and a central tensor

T lU×lI×lK . In this case we could see the dimensionality variables lU , lI and lK

as the number of latent factors that we have in the conventional matrix factor-

ization approach. The greater the number of conditions of the dimensionality

variables, the more complex the model is going to be. If we want to predict the

rating for item u by user i under context k, we could use the following equation:

r̂u,i,k = T ×P Pu∗ ×Q Qi∗ ×S Sk∗, (2.7)

where ×P is used to indicate that the tensor on the left is going to be multiplied

from the P side.

Similarly to matrix factorization, there is an objective function composed of

error and regularization terms. To learn the parameters, a stochastic gradient

descent algorithm is used.

Evaluation Multiverse Recommendation was evaluated using three datasets,

one semi-synthetic dataset and two others that were collected from surveys.

Mean Absolute Error (MAE) was used as the evaluation metric. The approach

is compared against a non-contextual matrix factorization model and against

two other context-aware recommenders: an OLAP-based method (Adomavicius

et al. 2005) and a method called item-splitting (Baltrunas & Ricci 2009). Re-

sults show that they are able to outperform all of the three methods across the
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three datasets in terms of MAE.

Summary The contribution of Multiverse Recommendation is that it is one of

the first approaches to support any number of contextual dimensions and, as

shown in (Karatzoglou et al. 2010), the model performs better than three other

models in terms of MAE.

However, the support of any amount of contextual dimensions comes at a cost,

since the number of parameters is exponential in the number of contextual

dimensions. For one contextual dimension K1 the dimension of the central

tensor T is lU × lI × lK1, but if n contextual dimensions are included, then the

dimension of T becomes lU × lI × lK1 × . . . × lKn. The number of parameters

grows geometrically with each extra contextual dimension.

Another problem of this approach is that it requires that there be a discrete and

indeed finite number of contextual conditions per contextual dimension. If con-

textual conditions were continuous, for example, then that dimension would in

principle be infinite. This removes any possibility of storing numeric continu-

ous values unless they are first transformed into categories. For instance, if we

are dealing with temperatures such 5°C or 36°C, they would have to be trans-

formed into categorical values such as cold=true, warm=false in the first case

and cold=false, warm=true in the second case.

Finally, the use of a semi-synthetic dataset does not bring much confidence to

the evaluation of Multiverse Recommendation. Although there are another two

datasets used to test the approach, they are quite small (the largest one having

around 6000 ratings and only two contextual dimensions). Testing Multiverse

Recommendation in a real-world dataset would really improve the confidence

in the results shown. But as we will see in much of the rest of this chapter, not

testing the models on real-world datasets is a tradition with CARS. Most of the

datasets are either semi-synthetically generated or are collected from surveys. It

is very rare to find an approach that has been tested on the data of a real-world

system. This is mainly because of the unavailability or real-world datasets that

contain ready-to-use contextual information.
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2.1.1.2 Context-Aware Matrix Factorization

Context-Aware Matrix Factorization (CAMF) is presented in (Baltrunas et al.

2011).

Goal The goal of CAMF is to extend Matrix Factorization in order to produce

context-aware recommendations. Baltrunas et al. model the interaction of rat-

ings with contextual dimensions by introducing additional model parameters.

Contribution CAMF is able to model the interaction of multiple contextual

dimensions with ratings using a number of parameter that grows linearly with

the number of contextual dimensions, resulting in a lower computational cost

than Multiverse Recommendation. Tests on three semi-synthetic datasets show

that the performance of CAMF is comparable to Multiverse Recommendation in

terms of MAE. Tests on two other datasets, collected from surveys, show that

CAMF has a better rating prediction performance than a context-less matrix

factorization model.

Differences with other approaches As we saw earlier, the number of pa-

rameters in Multiverse Recommendation grows exponentially with the number

of contextual dimensions. CAMF is able to have a comparable rating predic-

tion performance in terms of MAE using fewer parameters. Compared to other

CARS, this model also introduces different levels of granularity as we will see

later on. This makes the model more flexible: it is easy to adjust it in case we

want to reduce the number of parameters.

Notation The CAMF model uses the following notation:

Model In (Baltrunas et al. 2011), three CAMF models are introduced to in-

corporate context into recommender systems. The three models are based on

Matrix Factorization. The difference between the three models is the granular-

ity of the impact that the context has over the ratings.

The first model, called CAMF-C, includes a bias parameter per contextual condi-

tion that tells how each contextual condition influences the ratings so, assuming
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Table 2.2: Notation of CAMF.

Symbol Description

u A user
i An item
K A set of contextual conditions
C A contextual dimension
c The index of a contextual dimension
U A set of users
I A set of items
Ig The set of item groups
C A set of contextual dimensions
α The offset or average rating
βu The bias of user u
βi The bias of item i
βi,Cc The bias of item i under context Cc
pu The latent features vector of user u
qi The latent features vector of item i
c A vector containing the contextual conditions for each context dimension
r̂u,i,c The predicted rating that user u would give to item i under the contextual conditions c

that there are |K| contextual conditions, we would have |K| additional param-

eters. The second model, called CAMF-CI, adds a bias parameter that tells how

each contextual condition influences the ratings of each item. This means that

we are going to have |K|×|I| additional parameters, where |I| is the number of

items. The third model, called CAMF-CC, adds a bias parameter that tells how

each contextual condition influences the ratings of each item category, i.e., we

group the items into categories and have a different parameter for each cate-

gory. This means that we are going to have |K| × |Ig| additional parameters,

where |Ig| is the number of item categories.

The general equation to predict a rating using any of the three mentioned mod-

els above is:

r̂u,i,c = α + βu + βi + puq>i +
|C|∑
c=1

βi,Cc (2.8)

where α is the offset parameter and βu and βi are the user and item biases, re-

spectively. Here βi,Cc is a variable that tells how much the contextual dimension

Cc influences the rating of the item i. c = 〈C1, . . . , C|C|〉 is a vector that stores the

contextual conditions for each available context dimension. For instance, if we

have two contextual dimensions “Time of the day” and “Companion” a possible

value for it is c = 〈“night”, “friends”〉.

In CAMF-CI there is a parameter βi,Cc for each contextual condition of each

contextual dimension and item i combination. In the CAMF-CC model there
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is one parameter for each contextual condition and item category pair. That

means that βi,Cc = βi′,Cc if items i and i′ belong to the same category. In CAMF-C

there is just one single parameter βCc for each contextual condition. In other

words, we will have βi,Cc = βi′,Cc for every item i and i′. If a contextual condition

is unknown, i.e., Cc = 0 then the corresponding bias parameter βi,Cc is 0.

Evaluation CAMF is tested on three datasets, one semi-synthetic dataset and

two datasets collected from surveys. The rating prediction performance of the

model is measured using MAE. Baltrunas et al. compare CAMF against Mul-

tiverse Recommendation using the semi-synthetic dataset and find a similar

performance. Using the two datasets collected from surveys, they compare the

model against Matrix Factorization and find that CAMF has a lower MAE.

Summary CAMF has the advantage that it can be trained in linear time with

respect to the number of data points and contextual factors. For each contextual

dimension in CAMF-CI, there is a βi,Cc, so for each contextual dimension there

will be |I| × |Cc| parameters, where |Cc| is the number of contextual conditions

in the contextual dimension Cc. In total, the CAMF-CI model will have I ×
(C1 + · · · + C|C|) parameters to learn. This is a great advantage over Multiverse

Recommendation.

On the other side, CAMF-C assumes that context has an equal effect on all the

items, which is not always true. The ratings of a ski resort can be heavily af-

fected depending on the season, whereas the season could have little to no

effect on the ratings of a business hotel. CAMF-CC groups items into categories

and attempts to unveil the effect of the contextual dimensions on each category.

Although this works much better than CAMF-C, it requires the intervention of

an expert who is knowledgeable enough to create the right categories, group-

ing the items correctly. Finally, CAMF-CI has the highest level of granularity in

which a parameter is learned to capture how each contextual dimension affects

each item. But this model comes with the highest number of learned parame-

ters.

2.1.1.3 Latent Context Matrix Factorization Recommendation

Latent Context Matrix Factorization Recommendation (LCMF) is introduced in

(Unger et al. 2016).
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Goal The main goal in (Unger et al. 2016) is to design a context-aware rec-

ommender system for smartphones that is able to collect all of the available

information collected from the various smartphone sensors. Unger et al. com-

bine this “latent” contextual information collected from the mobile devices with

explicit contextual information in order to produce context-aware recommen-

dations. Another goal they have is to reduce the feature space from the data

that comes from the mobile devices, since the amount of features is quite high.

Contribution Unger et al. provide a hybrid model that mixes latent contex-

tual features with explicit contextual features. They present two methods to re-

duce the dimensionality space from the information gathered by the mobile de-

vices. They are able to outperform the rating prediction performance of CAMF

in terms of Root Mean Squared Error (RMSE). In their tests, they show that

a CARS that uses latent contextual dimensions or a mix of latent and explicit

contextual dimensions is able to beat a CARS that only uses explicit contextual

features.

Differences with other approaches The LCMF model extends from CAMF

and it is very similar to it, with the difference that it introduces a set of bias pa-

rameters βi,`l to model the influence that the latent contextual dimensions have

over the item ratings. Their methodology also varies since the data is collected

from mobile devices and then transformed in order to reduce the number of

dimensions.

Notation The LCMF model uses the following notation:

Model LCMF extends the CAMF model by incorporating latent features ex-

tracted from mobile phone sensors. Unger et al. call the context dimensions

that accompany the CAMF model explicit-context dimensions and the ones col-

lected from the mobile phone sensors latent-context dimensions. They record

visits of users to points-of-interest (POIs) with positive and negative feedback

(like or dislike) and store information from the mobile phone sensors, such

as GPS, accelerometer, microphone, light, gyroscope etc. They mix the latent-

context dimensions with explicit-context dimensions such as the time of the day,

whether it is weekend or weekday, and the weather conditions. In their user

study, they collected approximately 520 latent-context dimensions per record.
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Table 2.3: Notation of LCMF.

Symbol Description

u A user
i An item
C A contextual dimension
c The index of a contextual dimension
` A latent contextual dimension
l The index of a latent contextual dimension
U A set of users
I A set of items
C A set of contextual dimensions
L A set of latent contexual dimensions
α The offset or average rating
βu The bias of user u
βi The bias of item i
βi,Cc The bias of item i under context Cc
βi,`l The bias of item i under latent context `l
pu The latent features vector of user u
qi The latent features vector of item i
c A vector containing the contextual conditions for each context dimension
r̂u,i,c The predicted rating that user u would give to item i under the contextual conditions c

To reduce the number of dimensions they use feature engineering techniques

based on principal component analysis and deep learning. They extend the

CAMF-CI model to include the latent contextual dimensions in the context vec-

tor c = 〈C1, . . . , C|C|, `1, . . . , `|L|〉. In LCMF, c stores both the explicit contextual

conditions and the latent contextual conditions for each available context di-

mension. A predicted rating for the LCMF model is calculated as follows:

r̂u,i,c = βu + βi + puq>i +
|C|∑
c=1

βiCc +
|L|∑
l=1

βil`l (2.9)

As seen in Equation 2.9, the model proposed by Unger et al. is based on Equa-

tion 2.8. But the model is different because, besides including a bias parameter

βiCc for each explicit contextual condition, it also includes a bias parameter βil`l
for each latent contextual condition. This latent bias parameter is multiplied by

`l, which is a real number in the range [0, 1]. `l represents the signal readings

from the mobile phone sensors after a feature subset selection process.

Evaluation To evaluate the LCMF approach, Unger et al. developed a mo-

bile phone application that makes recommendations to users based on explicit

contextual information and contextual information collected from the mobile

phone sensors (latent context). A study was made with 60 uses and 227

points-of-interest. Overall, 7416 feedback records were collected. LCMF was
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compared against CAMF-CI and a context-less matrix factorization model on

both rating and ranking prediction tasks. To measure the rating prediction

error, RMSE was used; for the ranking predictions, hit rate and Normalized

Discounted Cumulative Gain (nDCG) were used. The hit rate is measured as

the amount of times a recommendation is liked among the top-K recommenda-

tions presented to the user. nDCG is a weighted average of the position indexes

among the top-K list when the weights are decreased as a function of the rank

(position) of the recommendation. In nDCG a discount is applied to “hits” with

low rankings (Unger et al. 2016).

Results show an overall better performance of LCMF across all of the metrics

used (RMSE, hit rate and nDCG) compared to CAMF-CI and a context-less ma-

trix factorization model. Surprisingly, in their results, the model that incorpo-

rates only the latent-context dimensions has better performance than the model

that includes both the explicit and latent dimensions. Unger et al. explain that

the explicit-context dimensions can cause over-fitting.

Summary LCMF inherits the advantages from CAMF, having linear time com-

plexity. It also adds the advantage of supporting continuous values for context

dimensions, not only categorical ones, such as the ones given by the `l variable.

Although the results from (Unger et al. 2016) are promising, they use only one

dataset for their results, which reduces the reliability of the evaluation.

2.1.2 Neighbourhood-based approaches

User-based neighbourhood approaches are, like matrix factorization, a type of

collaborative filtering method. They use a heuristic that makes predictions for

one user based on the items that other users have rated previously. The value

of an unknown rating r̂u,i can be calculated by aggregating the ratings of other

users (usually, the most similar other users) for the same item i (Adomavicius

& Tuzhilin 2005):

r̂u,i = aggr
u′∈Û

ru′i, (2.10)

where Û is the set of neighbours of u. A very simple example of the aggregation
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function is:

r̂u,i = 1
|Û |

∑
u′∈Û

ru′i (2.11)

In general, latent factor models like Matrix Factorization tend to have better

prediction performance than neighbourhood-based models due to their ability

to link various aspects of the data (Adomavicius & Tuzhilin 2015). However,

neighbourhood models are still used because of their simplicity, efficiency and

the fact that they can naturally express explanations about why an item is being

recommended (Desrosiers & Karypis 2011). In this section we will explore the

neighbourhood based approaches that have been proposed with the goal of

making context-aware recommendations.

2.1.2.1 Differential Context Relaxation

Differential Context Relaxation (DCR) is presented in (Zheng et al. 2012a).

Goal The goal of DCR is to create a CARS that identifies the relevant contex-

tual variables from a context-rich dataset, to reduce the dimensionality of the

problem, and alleviate the sparsity problem.

Contribution Given that having a lot of contextual variables increases the di-

mensionality of the problem and reduces the accuracy of the recommendations,

DCR introduces the concept of context relaxations, which reduce dimensional-

ity and increase rating prediction accuracy (Zheng et al. 2012a).

Differences with other approaches DCR is presented as a memory-based

collaborative-filtering alternative to the latent factor models that we have ex-

plored so far. Different from Multiverse Recommendation, CAMF and LCMF,

DCR uses previous ratings that happened under a similar or equal context to

make recommendations, whereas other approaches are limited to using only

the exact context. DCR can be classified as a hybrid between pre-filtering and

contextual modeling since they apply a filtering part in the selection of neigh-

bours and also use the context similarity to calculate the predicted rating under

a target context.
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Notation The DCR model uses the following notation:

Table 2.4: Notation of DCR.

Symbol Description

u A user
i An item
Û The set of neighbours of a user
c A vector containing the contextual conditions for each context dimension
µ A context relaxation

Model DCR is a user-based collaborative filtering model. The main idea is to

predict the rating r̂u,i that user u would give to item i based on the ratings that

other users, similar to u, have given to item i. The K most similar users to user

u are called the neighbours of u and are denoted by Û . To make a prediction,

the following formula is used:

r̂u,i = r̄u +

∑
u′∈Û

(ru′,i − r̄u′)× usim(u, u′)∑
u′∈Û

usim(u, u′) (2.12)

where usim(u, u′) is a function that calculates the similarity between users u

and u′. The similarity is calculated using the Pearson correlation coefficient

(Zheng et al. 2012a).

DCR divides the recommendation algorithm into components, allowing each

part to treat the context differently. In each component, the best set of contex-

tual dimensions to be used are selected through an optimization procedure.

One way to make the recommender from Equation 2.12 context-aware is to

select only neighbours of u that have rated items under the same target context

c, thus having a neighbourhood Ûc. We could also include only ratings that

were made under context c to calculate the user baseline r̄c. Finally, Equation

2.12 can be modified to include only the ratings that were made for item i by

the neighbours under the target context c, denoted ru′,i,c, and the baseline for

the neighbour r̄u′,c can be calculated using only the target context c. Once we

have made all these modifications, the context-aware user-based collaborative

filtering recommender would look like this:

r̂u,i,c = r̄u,c +

∑
u′∈Ûc

(ru′,i,c − r̄u′,c)× usim(u, u′)∑
u′∈Ûc

usim(u, u′) (2.13)
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The problem with the above equation is that if we limit the ratings to have

exactly the same context as c, then it could happen that in many cases we

have very few or no ratings from which to make the predictions. This is

problematic because in many cases we will not be able to produce recom-

mendations and the lack of ratings can also reduce the accuracy of the rec-

ommender. For instance, if we have three contextual dimensions that are

“Time”, “Companion” and “Day” and we want restaurants recommendations

for c1 = 〈“Night”, “Friends”, “Saturday”〉, only ratings made under that exact

situation will be considered.

The main idea behind DCR is to relax the strictness of the above approach

in order to also include ratings that were made under a similar context.

To achieve this, Zheng et al. introduce the concept of context relaxations,

that are represented by µ. Following the above example, we could in-

troduce a relaxation for each the contextual dimensions, like this: µx =
〈(any time), (exact companion), (contained weekday/weekend day)〉. In

this case, when we are looking for ratings that were made under similar con-

texts, we can ignore the “Time” dimension, we need to find exactly the same

kind of companion, and the day must belong to the same weekday/weekend

group as our target context. For instance, we could include ratings that

were made under c2 = 〈“Afternoon”, “Friends”, “Friday”〉 because this c2 is

similar to c1 under context relaxation µx. Ratings made under the context

c3 = 〈“Night”, “Husband”, “Saturday”〉 will not be considered because c3 is

not similar to c1 under context relaxation µx.

In DCR, the formulae to calculate the predicted rating are divided into three,

which are neighbourhood selection, neighbourhood contribution and user base-

line, like this:

r̂u,i,c = r̄u,µ3︸ ︷︷ ︸
user baseline

+

neigbourhood selection︷ ︸︸ ︷∑
u′∈Ûµ1

neighbourhood contribution︷ ︸︸ ︷
(ru′,i,µ2 − r̄u′,µ2)×usim(u, u′)

∑
u′∈Ûµ1︸ ︷︷ ︸

neigbourhood selection

usim(u, u′)
(2.14)

Here, for each of the three components, there is a different context relaxation

variable. µ1 is used for the neighbourhood selection, µ2 for the neighbourhood

contribution and µ3 is used for calculating the user baseline.
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In the neighbourhood selection component of the original k-Nearest Neigh-

bour (k-NN) algorithm, the neighborhood is composed of the K most similar

users to u. In DCR, the neighborhood is composed of the most similar users to

u who have rated item i in a context matching c under the relaxation µ1.

In the neighbourhood contribution component, the average rating of r̄u′ is

replaced by one where only the ratings that were given under the relaxation µ2

are considered. The result is denoted by r̄u′,µ2 and is subtracted from ru′,µ2 to

calculate the contribution of user u′ towards the prediction.

The calculation of the user baseline, r̄u, is the same but taking the relaxation

µ3 instead of µ2. The result is denoted by r̄u,µ3.

The goal is to find the set of the most influential contextual dimensions in order

to make accurate context-aware recommendations. This is achieved through

finding the best choices for context relaxations in each of the three components.

If the relaxations are too strict then a sparsity problem arises and if they are too

loose then the influence of contextual dimensions is lost (Zheng et al. 2012a).

In their original proposal of DCR (Zheng et al. 2012a), an exhaustive search

strategy was used to find the best combination of the contextual relaxation

variables (µ1, µ2 and µ3). This was possible for the particular dataset they were

using but likely to be impractical in general. Later, in (Zheng et al. 2012b), they

used particle swarm optimization to learn the best values for the contextual

relaxation variables.

Evaluation DCR is evaluated in (Zheng et al. 2012a) using a dataset of hotels

in the largest 120 cities in the USA crawled from TripAdvisor. The dataset con-

tains 2565 users, 1455 hotels and a total of 9251 ratings. This is the only time we

found a CARS that was evaluated in a real-world dataset (a dataset that comes

from an existing real-world platform and was not collected from a survey or

generated artificially). DCR was compared against a context-less user-based k-

NN approach like the one in Equation 2.12 and against a k-NN using contextual

pre-filtering. Experiments showed that DCR has superior rating prediction per-

formance in terms of RMSE. However, coverage is heavily affected when using

DCR going from 8% when using a context-less k-NN to 3% when using DCR.

In (Zheng et al. 2012b), DCR is evaluated again using another dataset collected

from a survey. This dataset contains 212 users that rated 20 food menus with a

total of 6360 ratings. Note that compared to the TripAdvisor dataset, this one
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is not sparse. This time, as is natural with a very dense dataset, the coverage

increases and DCR again outperforms a context-less user-based k-NN and a k-

NN context pre-filtering in terms of RMSE.

Summary DCR is able to reduce the dimensionality of a context-aware recom-

mendation problem by introducing context relaxations. This helps to alleviate

the sparsity problem and translates into a higher coverage compared to a strict

context k-NN approach. It also produces more accurate rating predictions.

However, DCR has a few drawbacks. First of all, it has a reduced coverage

compared to a context-less k-NN. This can be clearly seen in sparse datasets, as

shown in the results presented in (Zheng et al. 2012a). As stated in (Zheng et al.

2013), DCR suffers from the sparsity problem when used in datasets where the

context information is not very dense. Also, since the algorithm components

are dependent, there is no guarantee that selection of neighbours under con-

straint µ1 is going to bring ratings that satisfy constraint µ2 used to calculate

the neighbour contribution. When this happens, the algorithm is not able to

make a prediction (at least a personalized one) having a negative impact on

the coverage. Furthermore, the search space is exponential to the number of

contextual dimensions (Zheng et al. 2012b), which brings doubt on how scal-

able is the algorithm, and if it would work on a big dataset with a high number

of contextual dimensions. Zheng et al. also fail to compare DCR against Matrix

Factorization, which has been proven to have better performance than k-NN

(Koren & Bell 2015).

2.1.2.2 Differential Context Weighting

Differential Context Weighting (DCW) is presented in (Zheng et al. 2013).

Goal DCW is a generalization of DCR that aims to fix the sparsity problem

present in DCR and at the same time improve the recommendation accuracy by

reducing the dimensionality of the contextual recommendations problem.

Contribution DCW is able to produce more accurate recommendations with-

out the loss of coverage compared to other neighbourhood-based approaches.
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Differences with other approaches Instead of selecting a context in the way

that DCR does, DCW assigns a weight to each contextual dimension. DCW can

be classified as a hybrid between pre-filtering and contextual modeling since it

applies a filtering part in the selection of neighbours and also uses the context

similarity to weight the ratings of neighbours.

Notation The DCW model uses the following notation:

Table 2.5: Notation of DCW.

Symbol Description

u A user
i An item
ru,i The rating that user u gave to item i
ru,i,c The rating that user u gave to item i under the contextual conditions c
Û The set of neighbours of a user
Iu The set of all items rated by user u
c A vector containing the contextual conditions for each context dimension
σ A context weighting vector
ε A context similarity threshold
ρ An average rating weighted by context similarity
r̂u,i,c The predicted rating that user u would give to item i under the contextual conditions c

Model DCW introduces a context weighting vector σ = {σc ∈ R | 0 ≤ σc ≤ 1}
to assign a weight between 0 and 1 to each contextual dimension c. The weights

control the contribution of each contextual dimension to the prediction model.

For instance, we can have σ = 〈Time = 0.0, Companion = 0.9, Day = 0.4〉,
meaning that, when we are going to make contextual recommendations, the

“Time” dimension will be completely ignored and the “Companion” dimension

will be almost twice as important as the “Day” dimension.

Similarly to DCR, DCW divides the recommendations algorithm into compo-

nents. In particular, for DCW, the algorithm is divided into four components,

which are the neighbourhood selection, the neighbour contribution, the user base-
line and the user similarity, as can be seen in Equation 2.19.

Differently from DCR, in DCW the ratings are not filtered out, but instead a

score is assigned to the ratings depending on their context. In this way, the

more similar the context of a rating to the context of the prediction, the more it

is going to contribute. Based on σ, similarity between two contexts c and c′ is
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calculated like this:

csim(c, c′,σ) =

∑
c∈c∩c′

σc∑
c∈c∪c′

σc
(2.15)

As we will see later, the csim function is used in several places in the rating

prediction task. It is used to calculate the set of neighbours of a user Û , to

calculate the similarity between two users u and u′, and to calculate how much

a neighbour contributes towards the rating prediction.

To avoid including ratings that were made under a context very different from

c, Zheng et al. introduce four variables ε1, . . . , ε4 (one for each component)

that act as a minimum threshold. The goal of these variables is to remove all

ratings that have been made under contexts that are too different to the target

context c, i.e., csim(c, c′,σ) < ε. They explain that after running experiments,

it was found out that ratings made under very different context have a negative

impact on the rating prediction accuracy.

To do the neighbourhood selection, it has to be considered that users may

have rated in multiple contexts, for that reason, the maximally-similar context

is chosen and then the σ1 threshold is applied:

Ûu,σ,ε1 = {u′ : max
ru′,i,c′

(csim(c, c′,σ)) > ε1} (2.16)

Note that only neighbours who have rated items under a context c′ whose sim-

ilarity to the target context c exceeds ε1 are considered.

To calculate the neighbour contribution each rating is going to be weighted.

The weighting is done by multiplying the rating times the similarity

csim(c, c′,σ) divided by all the similarities of the other ratings. The weighted

average is calculated like this:

ρu′,i,σ,ε2 =

∑
ru′,i,c′ :csim(c,c′,σ)>ε2

ru′,i,c′ × csim(c, c′,σ)
∑

ru′,i,c′ :csim(c,c′,σ)>ε2
csim(c, c′,σ) (2.17)

Note that Equation 2.17 is necessary only when there are multiple ratings by

the same user to the same item under different contextual situations. If there

is only one rating for each user-item pair, then ρu′,i,σ,ε2 = ru′,i,c′ × csim(c, c′,σ).
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Only ratings whose context similarity is greater than ε2 are included.

To calculate the average rating of a user, the set of all items rated by user u,

which we will denote as Iu, is used. The overall average across all items rated

in a similar context is ρ̄ and is calculated in this way:

ρ̄u′,σ,ε2 =

∑
i∈Iu′

ρu′,i,σ,ε2

|Iu′|
(2.18)

The user baseline is the average of all the ratings made by user u in similar

contexts, determined by ε3. The user baseline is expressed as ρ̄u,σ,ε3.

To calculate the user similarity Zheng et al. weight each comparison between

ratings. They create a set Λε4 that contains all the items i and pairs of context

c and c′ for the users u and u′ respectively, such that user u has rated i under

context c, and user u′ has rated i under context c′ and csim(c, c′,σ) > ε4.

Λε4 = {〈i, c, c′〉 : ∃ru,i,c, ru′,i,c′ ∧ csim(c, c′,σ) > ε4} (2.19)

Once all the ratings and relevant contexts have been obtained, a weighted ver-

sion of the correlation function can be computed:

usim(u, u′,σ, ε4) =

∑
〈i,c,c′〉∈Λε4

(ru,i,c − r̄u)(ru′,i,c′ − r̄u′)csim(c, c′,σ)√∑(ru,i,c − r̄u)2∑(ru′,i,c′ − r̄u′)2 ∑
〈i,c,c′〉∈Λε4

csim(c, c′,σ)2

(2.20)

With the four components defined above, the rating can be predicted by using

the following equation:

r̂u,i,σ = ρ̄u,σ3,ε3︸ ︷︷ ︸
user baseline

+

neighbourhood selection︷ ︸︸ ︷∑
u′∈Ûu,σ1,ε1

neighbour contribution︷ ︸︸ ︷
(ρu′,i,σ2,ε2 − ρ̄u′,σ2,ε2)×

user similarity︷ ︸︸ ︷
usim(u, u′,σ4, ε4)

∑
u′∈Ûu,σ1,ε1︸ ︷︷ ︸

neighbourhood selection

usim(u, u′,σ4, ε4)︸ ︷︷ ︸
neighbour contribution

(2.21)

To find the best values for the σ1, . . . ,σ1, ε1, . . . , ε4 parameters, particle swarm
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optimization is used with the objective of minimizing the prediction error.

Evaluation DCW was evaluated using two datasets. The first one contains

6360 ratings made by 212 users for 20 food menus and it contains 6 contextual

dimensions. The second one contains 1010 ratings made by 69 users about 176
movies with 5 contextual dimensions. Both datasets were collected from sur-

veys. Zheng et al. run rating prediction experiments and compare DCW against

a context-less user-based k-NN, a neighbourhood-based pre-filtering approach

and against DCR. Experiments show that DCW has better prediction perfor-

mance than all of the aforementioned approaches in terms of RMSE. DCW’s

better prediction accuracy comes without sacrificing coverage, which is a great

improvement over the DCR approach.

Summary By reducing the dimensionality of the contextual recommendations

problem, DCW is able to perform better than DCR in terms of RMSE and cov-

erage. DCW improves the coverage of DCW because it is able to keep ratings

that are made under different contexts by assigning them a lower weight, thus

reducing the number of situations where no neighbours are found. Zheng et al.

evaluated DCW in quite small datasets, leaving open the question of whether it

will perform well on datasets with high dimensionality and high sparsity.

2.1.2.3 Contextual SLIM

Contextual SLIM (CSLIM) is introduced in (Zheng, Mobasher & Burke 2014).

Goal CSLIM is a Top-N recommender for context-aware recommendations.

This means that its focus is not rating prediction but rather ranking candidate

items in order to make a top-N recommendation.

Contribution Zheng, Mobasher & Burke present CSLIM, the first recom-

mender to extend the Sparse Linear Method (SLIM) (Ning & Karypis 2011,

2012) algorithm and incorporate contextual information to make contextual

ranking predictions. SLIM is able to make more accurate ranking predictions

than other state-of-the-art CARSs.
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Differences with other approaches CSLIM is like a neighbourhood-based

collaborative filtering approach, so it is different from latent factor approaches

like Multiverse Recommendation, CAMF and LCMF. It is more similar to DCR

and DCW but those two approaches are user-based, whereas CSLIM has both

user- and item-based variants. CSLIM is different to all of the aforementioned

approaches because, similarly to SLIM, it only works for ranking prediction

whereas all of the other approaches are used to predict ratings.

Notation The CSLIM model uses the following notation:

Table 2.6: Notation of CSLIM.

Symbol Description

u A user
i An item
k A contextual condition
ru,i The rating that user u gave to item i
ru,i,c The rating that user u gave to item i under the contextual conditions c
wi,i′ The similarity value between items i and i′

d The rating deviation of item i under the contextual condition k
K A set of contextual conditions
ru A vector with all the ratings made by user u
wi A vector containing the similarities of all the items with item i
R The ratings matrix
D A matrix storing all contextual rating deviations
W A matrix storing all the similarity values between all item pairs
r̂u,i,c The predicted rating that user u would give to item i under the contextual conditions c
ˆ̂su,i The predicted ranking score for user u and item i
ŝu,i,k The predicted ranking score for user u and item i under the contextual conditions k
R̂ The predicted ratings matrix

Model In order to have a better understanding of the CSLIM model, we will

first introduce SLIM. SLIM is an item-based neighbourhood-based collaborative

filtering model. It is an improvement over the traditional item-based k-NN. An

item-based k-NN makes rating predictions by looking at the ratings of items

that are similar to an item i. We will let Îi be the set of K most similar items to

i. Rating predictions can then be calculated by using the following formula:

r̂u,i =

∑
i′∈Î

ru,i′ × isim(i, i′)∑
i′∈Î

isim(i, i′) (2.22)

where isim(i, i′) is a function that calculates the similarity between items i and

i′. Traditionally, cosine similarity, adjusted cosine similarity or Pearson correla-

tion are used to calculate this similarity.
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If we are only interested in making ranking predictions rather than rating pre-

dictions, then we can eliminate the denominator part of Equation 2.22, obtain-

ing:

ˆ̂su,i =
∑
i′∈Î

ru,i′ × isim(i, i′) (2.23)

where ˆ̂su,i is the predicted ranking score.

If the ratings are in a ratings matrix R and item similarity values in a matrix

W, then we can calculate the predicted ranking score ˆ̂su,i using:

ˆ̂su,i = r>uwi (2.24)

where ru from R is a vector that contains the ratings of all the items rated by

user u and wi from W is a vector that contains the similarity values between

item i and the rest of items. Since we are assuming that su,i is unknown, then

su,i = 0. To avoid trivial recommendations, where an item recommends itself,

then we impose the constraint diag(W) = 0 (Ning & Karypis 2011).

The goal of SLIM is to learn the best values of W that minimize an objective

function so that R̂ = RW. Like in traditional Matrix Factorization approaches,

the objective function of this model is composed of terms for prediction error

and regularization to help avoid over-fitting. In (Ning & Karypis 2011), W is

learned by using the coordinate descent method.

Zheng, Mobasher & Burke introduce CSLIM, a model based on SLIM that

incorporates contextual information in order to make context-aware recom-

mendations (Zheng, Mobasher & Burke 2014). The context is represented

by a binary vector k of size |K|, where |K| is the total number of contex-

tual values. Here each kk is used to represent the current contextual situa-

tion. For example, we could have two contextual dimensions Time and Oc-

casion, and all the contextual conditions can be represented in an |K|-sized

vector, like this: {Time=weekend, Time=weekday, Occasion=Business, Occa-
sion=Romance}. Having the vector k = 〈0, 1, 1, 0〉 means that the current con-

text is {Time=weekday, Occasion=business}.

To incorporate context into the recommendations, a matrix D that stores the

contextual rating deviations is used. Rating deviations are the differences be-

tween the rating ru,i,k under a particular context k and a context-less rating ru,i.
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The D matrix is of size |I| × |K|, where each row represents an item and each

column represents a contextual condition (e.g., Time=weekend, Time=weekday,
Companion=Friends, etc.). Each contextual rating deviation is denoted by di,k.

Note how, in this model, it is assumed that additional to the contextual ratings

ru,i,k, there are ratings that users made without the influence of a context. These

context-less ratings are in the matrix R. If a context-less rating is not available,

then an average of the ratings over item i by user u in contexts different to k is

taken. Having this, the predicted contextual rating can be calculated using:

r̂u,i,k = ru,i +
|K|∑
k=1

di,kkk (2.25)

Finally, with the predicted contextual rating r̂u,i,k, Equation 2.24 is modified to

include the contextual ratings, like this:

ŝu,i,k =
|I|∑
i′=1
i′ 6=i

r̂u,i,kwi′,i =
|I|∑
i′=1
i′ 6=i

ru,i +
|K|∑
k=1

di,kkk

wi′,i (2.26)

where wi,i′ corresponds to the entry (i, i′) of the W matrix.

The parameters to be learned in this model are D and W. The model presented

in 2.26 is called CSLIM-I-CI. There are two further variations of this model:

CSLIM-I-CU and CSLIM-I-C. In these variations, what changes is the size of the

D matrix. For instance, in CSLIM-I-CU, the matrix D has a size |U | × |K| and it

stores how the context affects each user. In CSLIM-I-C, D is a vector of length

|K| that stores how each contextual value deviates from the ratings in a general

way, i.e., not for each item, but generally, very similar to the CAMF-C model

presented in Section 2.1.1.2.

Evaluation In (Zheng, Mobasher & Burke 2014), results are shown for the

evaluation of CSLIM across three datasets involving ratings of food, restaurants

and music. Their size is 6360, 1421 and 3010 ratings respectively and all of

them were collected using surveys. CSLIM has better performance than SLIM,

CAMF, context-aware splitting approaches (Zheng, Burke & Mobasher 2014)

and Multiverse Recommendation in terms of precision, recall and mean average

precision across the three datasets.
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Summary CSLIM presents a new way to make Top-N recommendations by

extending the SLIM model in order to incorporate contextual information into

it. CSLIM is able to make better ranking predictions compared to other state-

of-the-art approaches.

One concern about the datasets used in (Zheng, Mobasher & Burke 2014) to

evaluate CSLIM is that the datasets in which CSLIM is evaluated are very dense:

two of them have a user-item density of 100% and the other one of 60%. In

real-world applications these levels of density are rarely seen. For instance,

the MovieLens 10M1 has a density of 0.14%, the Yelp Hotels and Yelp Restau-

rants2 have densities of 1.2% and 0.2% respectively, and the Four-city dataset of

TripAdvisor hotel reviews3 has a density lower than 0.1%. Therefore, the per-

formance of CSLIM on sparse datasets like those just mentioned remains a big

concern.

2.1.3 Summary

In this section we have reviewed six Context-Aware Recommender Sys-

tems. Three of them were latent-factor models and three of them were

neighbourhood-based models. A classification of the CARS that we have re-

viewed can be seen in Figure 2.1. We can summarize the three main weak-

nesses of this past work as: the dimensionality, the lack of suitable contextual

datasets, and the sparsity of the datasets used to evaluate the models.

Table 2.7: Summary of the CARSs that we have reviewed.

Model Type Number of Evaluation Data Source
Parameters

Rating Top-N Semi- Survey User Real-
synthetic study world

Multiverse Latent factor Exponential 3 3 3

CAMF Latent factor Linear 3 3 3

LCMF Latent factor Linear 3 3 3

DCR Neighbour-based Linear 3 3 3

DCW Neighbour-based Linear 3 3

CSLIM Neighbour-based Linear 3 3

Regarding the dimensionality, most of the approaches are aware of the dimen-

sionality problem existing in CARS and try to reduce the number of parameters

1https://grouplens.org/datasets/movielens/10m/
2https://www.kaggle.com/c/yelp-recsys-2013
3http://www.cs.cmu.edu/∼jiweil/html/four_city.html
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Contextual-
Model

Neighbourhood
based

DCR DCW CSLIM

Matrix	
Factorization

MF	+	Bias

CAMF LCMF

Tensor	
Factorization

Multiverse

Figure 2.1: Classification of CARS

to be learned. The exception to this is the Multiverse Recommendation model

in which the number of parameters is exponential to the number of contextual

dimensions. In the rest of the approaches, the number of parameters grows

linearly with the number of dimensions as we can see in Table 2.7.

Another problem is the lack of contextual datasets for evaluation. As we can see

in Table 2.7, from all of the reviewed approaches, only one uses a real-world

dataset; the rest of them use datasets that are either synthetic or come from

surveys; in one other case a dataset collected from a user study was used. Using

a synthetic dataset gives little confidence in the soundness of the evaluated

model. Surveys may bias the behaviour of users, but also tend to result in very

dense datasets, which are rare when it comes to real-world datasets. Datasets

collected from user studies are better, but they are very expensive to obtain. As

seen in (Unger et al. 2016), a mobile phone application had to be designed and

many volunteers had to be hired to conduct the user study.

The lack of datasets also hides a third problem: the sparsity problem. This

problem manifests itself in two ways, with low coverage and failing to beat

context-less models using context-rich datasets. The first problem is evident

in the results reported in (Zheng et al. 2012a) for DCR. DCR was the only ap-

proach that used a real-world dataset and it had a coverage of just 8%, meaning

that in 92% of the cases a prediction could not be made. Since none of the other

approaches used real-world datasets, we can not conclude how those CARS

might perform compared to context-less approaches on real world datasets.
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In the next section we will review recommender systems that exploit user-

generated reviews. These approaches all use real-world datasets but they do

not explicitly extract contextual information about the context in which the

item was consumed from the reviews.

2.2 Unsupervised Review-Based Approaches

As we have seen in our reviews of context-aware approaches, contextual infor-

mation is often not available, either because it cannot be obtained or because

it is very expensive to obtain. There is another branch of recommender sys-

tems research that focuses on exploiting an alternative source of information:

consumer reviews.

In many websites, such as Amazon, Yelp and TripAdvisor, not only may con-

sumers give ratings on items that they have consumed, additionally they can

also write reviews describing their experiences with those items. One interpre-

tation of a consumer’s review of an item is that it gives a justification of why

that consumer gave that rating to that item (McAuley & Leskovec 2013). Since

the users themselves are explaining why they gave a rating, this becomes a

rich source of information that can be exploited to enhance the performance of

recommender systems.

Including reviews as part of the recommendation model can bring several bene-

fits, such as helping to deal with the problem of sparsity in the dataset, helping

to solve the cold-start problem for new users, and lastly increasing the accuracy

of the recommendations even in non-sparse datasets by including additional

information such as the opinions of the consumers (Chen et al. 2015).

Many models that exploit reviews have been proposed. We will focus only on

exploring review-based models that are unsupervised. This is in line with the

goal of our own work, which is to use unsupervised techniques so that we do

not need to use a pre-defined set of contextual variables. In this section, we

will survey two types of approaches: generative models and feature extraction

approaches.
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2.2.1 Generative models

In discriminative models, given the data x, a classifier tries to predict its class y,

basically by estimating p(y|x). These are called discriminative models because,

given the data x, they are able to discriminate between the different classes.

Generative models work the other way around: having a class y they try do

describe what the data should look like. In other words, they are able to model

p(x|y) (Nguyen et al. 2014). They are called generative models because, given

the classes, they are able to generate the data that comes from those classes.

In this section we will describe the generative models that are used to produce

review-based recommendations.

2.2.1.1 Hidden Factors as Topics

Goal The goal of the work described in (McAuley & Leskovec 2013) is to cre-

ate a recommender system that combines latent rating dimensions with latent

review topics.

Contribution Hidden Factors as Topics (HFT) is able to match latent rating

dimensions with latent topics, which helps to explain why a user likes or dislikes

a certain item. HFT is also able to make more accurate recommendations than

other review-based recommender systems with a totally unsupervised approach

that also does not use heuristics and does not require any form of preprocessing.

Differences with other approaches HFT is different to other approaches in

the sentiment analysis field (Dong et al. 2013, 2014, 2016, Hu & Liu 2004)

because in sentiment analysis the goal is to predict the sentiment of a user

towards an item from a review, whereas the goal of HFT is to predict ratings

of items that the user has not seen. It is also different from approaches in the

aspect extraction field (Ganu et al. 2013, Levi et al. 2012) because many of

those proposals require human annotators, whereas HFT is unsupervised.

Notation The HFT model uses the notation presented in Table 2.8:
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Table 2.8: Notation of HFT.

Symbol Description

u A user
i An item
ru,i The rating that user u gave to item i
τu,i The review that user u wrote about item i
wτ,j jth word of review τ
zτ,j Topic for the jth word of review τ
α The offset or average rating
βu The bias of user u
βi The bias of item i
τi A document containing all the reviews written about item i
pu The latent features vector of user u
qi The latent features vector of item i
θi The vector containing the topics distribution for item i
φt The vector containing the words distribution for topic t
r̂u,i The predicted rating that user u would give to item i
|T | The number of latent dimensions/topics

Model McAuley & Leskovec propose a model in which the vector of latent

features that describes an item i (or user u) is learned while having regard to

the probability vector of topics i that discuss that item in item reviews. The

latent features matrices are optimized using gradient descent, but instead of

placing regularization parameters that punish the complexity of the model, the

topic model probability is used as the regularization parameter. To learn the

topic model, McAuley & Leskovec use a transformation function that relates

each latent features vector qi to a topic document probability vector θi.

Hence, HFT discovers topics that are correlated with item and user latent fac-

tors, qi and pu. Documents are modeled as the set of all reviews about an item.

Document τi contains all the reviews about item i.

For each item i, a topic distribution θi is learned. θi contains the extent to which

each of the k topics is being discussed across all reviews for item i. Implicitly,

this assumes that the number of topics in the reviews is equal to the number of

latent features in the user/item space.

The rating parameters qi and the review parameters θi are linked through a

transformation function, given by:

θi,t = exp(κqit)∑
t′ exp(κqit′)

(2.27)

where κ is a parameter that controls the ‘peakiness’ of the transformation. As

κ→∞, θi will approach a vector that has a value of 1 only for the largest index

of qi; as κ→ 0, θi approaches a uniform distribution. Intuitively, large κ means
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that users only discuss the most important topic, while a small κ means that

users discuss all the topics evenly.

Thanks to the transformation function, there is no point in learning both θi and

qi, since one uniquely defines the other. In practice the value of qi is learned.

The transformation function is the key contribution in this model.

The HFT model is based on the idea that factors should be useful to predict

ratings, but also once those factors are transformed into topics, we should ob-

tain a good generative model of the text review corpus using θi. The objective

function for a corpus S, which is composed of ratings and reviews, is defined

as:

f(S|Θ,Φ, κ, z) =
∑
ru,i∈S

(r̂u,i − ru,i)2︸ ︷︷ ︸
rating error

−µ · l(S|θ, φ, z)︸ ︷︷ ︸
corpus likelihood

(2.28)

The first part of the above equation is the prediction error of the ratings and the

second part is the likelihood that the words in the corpus S can be generated

with the learned parameters. µ is a hyperparameter that trades off the impor-

tance between rating prediction and the likelihood of generating the corpus.

The corpus likelihood is very important in this equation, even if the model is

just being used to predict ratings and not obtaining topics, since it acts like a

regularization term.

To infer the values of the rating parameters Θ = {α, βu, βi,pu,qi}, and the

parameters associated with topics Φ = {θ, φ}, McAuley & Leskovec attempt to

minimize the function defined in equation 2.28. That is:

argmin
Θ,Φ,κ,z

f(S|Θ,Φ, κ, z) (2.29)

Since qi and θi are linked through the transformation function, a change in qi
modifies the values of both the rating prediction and the corpus likelihood. For

that reason Θ and Φ cannot be optimized independently.

The optimization procedure to obtain the parameter is composed of two steps:

update Θ(t),Φ(t), κ(t) = argmin
Θ,Φ,κ,z

f(S|Θ,Φ, κ, z) (2.30)
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sample z(t)
τ,jwith probability p(z(t)

τ,j = k) = φ
(t)
k,wτ,j

(2.31)

In the first step, the values of z (the topic assignments for each word) are fixed

and the remaining variables (Θ,Φ and κ) are fitted using gradient descent. In

the second step an iteration is performed over all the words from all the doc-

uments and their topics assignments are updated. The two steps are executed

until convergence.

Note that the second step is very similar to what is done in Latent Dirichlet

Allocation (LDA) (Blei et al. 2003). In LDA, topic assignments θ are updated by

sampling from a Dirichlet distribution. Instead, in HFT, the topics assignments

are obtained by transforming the qi parameter, which is calculated in step one.

Evaluation In (McAuley & Leskovec 2013), HFT is compared against an offset

baseline recommender, matrix factorization and LDA in terms of rating predic-

tion using Mean Squared Error (MSE) as the evaluation metric. Twenty-seven

real-world datasets are used to evaluate the performance of the models. All

of the datasets are composed of reviews and ratings, which in total add up to

nearly 42 million reviews. Twenty of those datasets come from Amazon and the

rest come from Ratebeer, Beeradvocate, Citysearch and Yelp Phoenix. Results

show that HFT can produce more accurate recommendations than all of the

other approaches across all 27 real-world datasets.

Summary One advantage of this model is that it is good for users who have

very few ratings but have provided reviews. When a user has a small amount

of ratings, collaborative filtering models can not make accurate predictions, but

when topics are used, reviews can give a better insight of what the preferences

of the user are, even with a low number of reviews.

One fundamental disadvantage of this approach is that the number of topics of

the topic model has to be the same as the number of factors. It has been shown

that a quite high number of factors will translate into a better recommender

(Koren 2008, Unger et al. 2016). But the same does not apply to topic models.

It is well known that a large number of topics will result in “over-clustering” a

topic model, where many topics will overlap, having many words in common

(Greene et al. 2014). In (McAuley & Leskovec 2013), it is mentioned that future

work would be to add additional latent factors that are not constrained to topics
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in the topic model, so that the number of latent factor is independent of the

number of topics. Ideally this would permit to do matrix factorization with a

higher number of factors and use a topic model with the right number of topics

(which does not have to be so high). This argument applies especially because

McAuley & Leskovec talk about the interpretability of the latent dimensions,

which would require a good topic model. McAuley & Leskovec claim to obtain

highly interpretable textual labels for latent recommendations, but this can only

be achieved if the topics are good. As stated in (Ling et al. 2014), “there is a
discrepancy between the item topic distribution θi in LDA and the item feature
vector qi in matrix factorization. The former is a distribution which is all positive
and sums up to 1 while the latter can assume any real value”.

2.2.1.2 Ratings Meet Reviews

Goal In (Ling et al. 2014), the Ratings Meet Reviews (RMR) model is pre-

sented. The goal of Ling et al. is to build a recommender system that alleviates

the cold-start problem through the use of reviews and to provide recommenda-

tions that are interpretable.

Contribution There are two contributions presented in (Ling et al. 2014).

First, a new method to combine content-based filtering with collaborative fil-

tering is presented. This method models the text reviews and numeric ratings

simultaneously. Second, the RMR approach is shown to be more accurate than

other baseline and state-of-the-art approaches.

Differences with other approaches RMR is very similar to HFT in the sense

that they are both fitting a latent factor rating matrix and a topic model review

corpus simultaneously. The difference lies in the fact that HFT is a Matrix Fac-

torization model that replaces the regularization by the corpus likelihood. HFT

also has a transformation function that links the items’ latent factors matrix to

the latent topics. RMR, on the other hand, uses a mixture of Gaussians to model

the ratings assuming that the mixture proportion has the same distribution as

the topic distribution. In this way, the need for a transformation function is also

avoided.

Notation The RMR model uses the following notation:
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Table 2.9: Notation of RMR.

Symbol Description

u A user
i An item
ru,i The rating that user u gave to item i
wτ,j jth word of review τ
zτ,j Topic for the jth word of review τ
τi A document containing all the reviews written about item i
pu The latent features vector of user u
θi The vector containing the topics distribution for item i
φt The vector containing the words distribution for topic t

Model In (Ling et al. 2014) a model that combines content-based filtering

with collaborative filtering using information from ratings and reviews is pre-

sented. This approach, called RMR, extracts topics from text reviews and aligns

the topics with rating dimensions in order to improve prediction accuracy. With

this approach, latent topics become interpretable and it can help to recommend

cold-start items. To help solve the problem of interpretation present with latent

features, (Ling et al. 2014) tag each latent dimension with a word cloud that

explains the meaning of the dimension and align the latent topic spaces with

rating spaces. Similarly to HFT, in RMR the reviews are grouped per item.

As in (McAuley & Leskovec 2013), the goal of RMR is to find the best values for

the parameters Φ = {θ, φ,p}, Ling et al. do this through a generative process in

which they ‘tune’ the parameters using a Gibbs sampler. The generative process

is the following:

Algorithm 1 Ratings Meet Reviews
Input: collection of documents D, number of topics k.
Output: tuned parameters Φ = {θ, φ,p}.

1: for all u ∈ U do . For each user
2: for all t ∈ T do . For each latent topic
3: pu,t ∼ Gaussian(µ0, σ

2
0)

4: for all t ∈ T do . For each latent topic
5: φt ∼ Dirichlet(ζ)
6: for all i ∈ I do . For each item
7: θi ∼ Dirichlet(η)
8: for all wi,j do . For each description word
9: zτi,j ∼ Multinomial(θi) . Draw topic assignment

10: wτi,j ∼ Multinomial(φzτi,j
) . Draw word

11: for all ru,i do . For each observed rating assigned by u to i
12: fu,i ∼ Multinomial(θi) . Draw topic assignment
13: ru,i ∼ Gaussian(pu,fu,i , σ2) . Draw the rating
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RMR uses a mixture of Gaussians (instead of Matrix Factorization) to model

the ratings. These user-topic specific Gaussian distributions describe how a

user values the aspects denoted by each latent topic. The item is modeled as

a distribution of topics which, together with the user-topic specific Gaussian

distributions, determine how a user would rate the item. The items and review

text are connected by the same item topic distribution θ. The more a user talks

about certain aspects concerning an item, the higher the distribution will be on

these topics, which in turn affects the rating that the user would assign to the

item.

To obtain these distributions, Ling et al. use a Gibbs sampler to learn the pa-

rameters θ, φ and p, and finally they can make predictions about an item using

the formula:

r̂u,i =
∑
t

θi,tpu,t (2.32)

Evaluation RMR was tested using the exact same datasets as in (McAuley &

Leskovec 2013) for HFT: in summary, a collection of 27 datasets that contain

close to 42 million reviews and ratings. RMR was evaluated against HFT, LDA,

Matrix Factorization and the model proposed in (Wang & Blei 2011) in terms

of rating prediction accuracy using RMSE as the evaluation metric. The results

presented show that RMR is more accurate in terms of RMSE than the other

approaches. It also shows that approaches that use text reviews perform much

better than the ones that do not when the sparsity is very high.

Summary One of the main advantages of this model is that it lines-up both

reviews and ratings using a generative model, removing the need to use a trans-

formation function as needed in (McAuley & Leskovec 2013). Where there are

very few ratings, the topic distribution θ can still be learned accurately from the

reviews. Another advantage that this method has over methods that use Matrix

Factorization is that in this method the latent features obtained from the ratings

and from the reviews have a direct mapping, whereas the other methods such

as the one presented in (McAuley & Leskovec 2013) need to develop a transfor-

mation function to perform this mapping. On the other hand, although topics

can be interpretable, Ling et al. do not provide a methodology or a metric to

measure the quality of the generated topics.
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2.2.1.3 Jointly Modeling Aspects, Ratings and Sentiments

The Jointly Modeling Aspects, Ratings and Sentiments (JMARS) model is pre-

sented in (Diao et al. 2014).

Goal Diao et al. build an unsupervised movie recommender system based on

ratings and reviews. The goal of JMARS is to predict the rating that a user will

give to an item, and also to predict the review that the user will write for that

item. The predicted rating is, of course, in the form of a real number, and the

predicted review is presented as a collection of words. The predicted ratings

and reviews are modeled jointly.

Contribution The contribution in (Diao et al. 2014) is a recommender that is

able to outperform other state-of-the-art recommenders. The model is able to

obtain a representations of user interests and movie properties and it is able to

uncover aspect-specific sentiments.

Differences with other approaches JMARS is different to HFT and RMR in

the sense that JMARS includes several language models for the reviews. For

instance, it has one language model for movie descriptions, another one for as-

pects of the movies, another one for the sentiments associated to the movies and

so on. JMARS also incorporates aspects and sentiment into its model, whereas

HFT and RMR model reviews and ratings, associating each topic dimension to

one latent factor.

Notation The JMARS model uses the following notation:

Table 2.10: Notation of JMARS.

Symbol Description

u A user
i An item
ru,i The rating that user u gave to item i
α The offset or average rating
βu The bias of user u
βi The bias of item i
pu The latent features vector of user u
qi The latent features vector of item i
r̂u,i The predicted rating that user u would give to item i
A A scaling matrix of aspects
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Model In JMARS, θu is the distribution that encodes the interest of users to-

wards the aspects they write and care about. Similarly, θi encodes the amount

of the aspects that the item i contains.

The presented model assumes that users u and items i are characterized by la-

tent factor vectors pu and qi respectively that are drawn from zero-mean spher-

ical Gaussian priors.

pu ∼ N (0, σ2
uI) and qi ∼ N (0, σ2

i I) (2.33)

where σ2
u and σ2

i are the hyperparameters that represent the variances related

to the users and items.

This model assumes that items are composed of aspects and that the same item

can be rated differently, depending on the aspect on which the item is being

evaluated. Thus, for each aspect there is going to be a different rating ru,i,a,

and the final rating ru,i of the item is going to be given by aggregating all the

aspect-ratings.

The aspects are captured by A, and they are useful to see if the properties of an

item imatch the expectations of the user uwhen viewed under a specific aspect.

In other words, the rating ru,i,a will reveal if a user appreciates a particular

aspect of an item such as, for instance, the plot or the special effects of a movie.

To calculate the rating that a user would give to an item under a certain aspect

the following equation is used:

r̂u,i,a = α + βu + βi + p>uAqi (2.34)

where βu and βi are the user and item biases, and α is a common bias. The goal

of the matrix A is to emphasize the aspect-specific properties, while the vectors

pu and qi contain the general profile. In this way, one could say that, even if an

item is very good, it could not excel in some aspects. For instance, a movie can

be very good overall but have poor special-effects.

Each element of A, pu, qi, βu and βi is assumed to follow a Gaussian distribu-

tion with a fixed variance. In other words, the variance is a fixed real number

and does not come from a distribution.

Diao et al. also assume that users have an interest distribution θu related to
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the aspects they write and care about. The same applies for the items, which

contain a number of aspects, as indicated by θu.

To make inferences, the Gibbs-EM method is used. This method alternates

between collapsed Gibbs sampling and gradient-descent to estimate the param-

eters in the model.

The parameters to be learned in this model are the biases α, βu and βi, the

hidden factor vectors pu and qi, the aspects A and sentiments. They are learned

in order to model the user ratings and to be able to maximize the probability

of generating the text reviews. The likelihood of generating the reviews and

predicting the ratings is given by the negative log posterior, defined as:

L := −log p(R,W |Υ,Ω) (2.35)

where R denotes the ratings, W denotes the words, Υ denotes the Gaussian

hyperparameters and Ω denotes the Dirichlet hyperparameters.

The terms of Equation 2.35 are decomposed for the purpose of using the infer-

ence algorithm, obtaining:

L =
∑

ru,i∈R
[ε−2(ru,i − r̂u,i)2 − log p(wu,i|Υ,Ω)]. (2.36)

The left part of the above equation denotes the prediction error on user rat-

ings. The right part denotes the probability of observing the generated reviews

conditioned on priors.

Evaluation JMARS is evaluated using a movie dataset with ratings and re-

views collected from IMDb4. The dataset contains 348415 movie reviews and

ratings made by 54671 users about 22380 items, having a total density of 0.03%.

The dataset is not publicly available.

Diao et al. evaluate the rating prediction performance using MSE as the eval-

uation metric. They compare JMARS against Probabilistic Matrix Factorization

and Hidden Factors as Topics. The results show that they have a better perfor-

mance against both methods in terms of MSE.

4https://www.imdb.com
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A qualitative evaluation of JMARS is also presented, showing the learned as-

pects from the reviews, the extracted sentiment words and the movie specific

words. No comparison is made with other approaches for the qualitative evalu-

ation.

Summary JMARS is a model that brings together ratings and reviews to make

rating predictions. Results show that it is able to beat other state-of-the-art rec-

ommender systems in terms of rating prediction accuracy. It is also completely

unsupervised and, unlike other aspect-based recommendation models (Chen

& Chen 2015, Levi et al. 2012), it does not need the aspects to be explicitly

defined.

Even though this work looks very promising, it has a few drawbacks. Only one

dataset is used to evaluate JMARS, which is a big weakness. The model is quite

complex and makes many assumptions. Even though it is a probabilistic model,

given the number of assumptions, it is more similar to an heuristic-based model.

Negation cases, such as “not good”, are not incorporated.

To evaluate the aspects ratings of the reviews, only one review is presented,

there are no defined metrics, and showing one positive case does not constitute

a proof that the model is working properly. No methodology is presented to

measure the quality of the extracted aspects.

2.2.1.4 Topic-Criteria

Goal The goal of the work described in (Rossetti et al. 2013) is to extend the

topic modeling method in order to make interpretable user and item models

that can explain user preferences and produce recommendations. Two models

are introduced: Topic-Criteria (TC) and Topic-Sentiment Criteria (TSC).

Contribution The contribution of (Rossetti et al. 2013) is that they create two

new recommendation models that are based on the topic modeling method.

These models are able to outperform different baselines on rating prediction on

two real-world datasets. The presented recommendation models make use of

both ratings and reviews in order to predict ratings, and a user model is built

using only reviews in order to describe the preferences of users.
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Differences with other approaches The difference between HFT (McAuley

& Leskovec 2013), RMR (Ling et al. 2014), JMARS (Diao et al. 2014) and the

models presented in (Rossetti et al. 2013) is that the former approaches learn

their models using reviews and ratings jointly, whereas TC and TSC first build a

topic model using LDA (Blei et al. 2003) or Joint Sentiment-Topic Model (JST)

(Lin & He 2009) and then they use that topic model along with ratings to be

able to make predictions.

Notation The TC model uses the following notation:

Table 2.11: Notation of TC.

Symbol Description

u A user
i An item
τu,i The review that user u wrote about item i
z A topic
Υu The set of reviews made by user u
Υi The set of reviews made about item i

Model We will limit ourselves to describing just the TC approach as both TC

and TSC are based on the same principle. We refer to the reader to (Rossetti

et al. 2013) to find a detailed description of TSC. TC is based on the idea of

building profiles for both users and items and then matching those profiles in

order to make predictions. User profiles are built using only reviews whereas

item profiles are built using both reviews and ratings.

In TC the user profile is built by averaging the topic weights across all the items

the user has written reviews about, as follows:

UP (u, z) =

∑
τu,i∈Υu

p(z|τu,i)

|Υu|
(2.37)

where p(z|τu,i) is the strength of topic z in review τu,i and Υu is the set of reviews

written by user u.

Items profiles are built using both topic weights and ratings:

IP (i, z) =

∑
τu,i∈Υi

p(z|τu,i) · ru,i∑
τu,i∈Υi

p(z|τu,i)
(2.38)
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where Υi is the set of reviews written about item i.

In summary, Rossetti et al. are mapping both users and items to a common

aspect space that is determined by the number of topics k. The user profile will

reveal the aspects that the user cares about and the item profile will reveal how

satisfied the users are with each of the aspects of a given item.

In order to predict ratings, the sum of the product for each topic in the user and

item profiles is calculated, as indicated by 2.39:

r̂u,i =
k∑
z=1

UP (u, z)IP (i, z)ϕz (2.39)

where ϕz is a weight that is optimized to minimize the rating prediction error.

ϕz represents the strength that topic z contributes to the rating.

Evaluation Rossetti et al. evaluate TC using two real-world datasets from

the Yelp and TripAdvisor websites. The Yelp dataset is part of the Yelp Data

Challenge and contains business reviews mainly about restaurants, and the Tri-

pAdvisor dataset is composed of hotel reviews. In order to have different levels

of sparsity, the authors removed items and users that had at least n reviews,

resulting in four datasets: Yelp-5-5, Yelp-10-10, TA-3-3 and TA-5-5. Yelp-5-5

contains 145735 reviews made by 9382 users about 3733 items, Yelp-10-10 con-

tains 101416 reviews made by 2413 users about 3802 items, TA-3-3 contains

83395 reviews made by 12342 users about 13048 items, and TA-5-5 contains

14656 reviews made by 1774 users about 1850 items. RMSE is used to evalu-

ate the performance of both TC and TSC. In both Yelp datasets, TC has better

performance than TSC, k-NN and Probabilistic Matrix Factorization (Salakhut-

dinov & Mnih 2008). In both TripAdvisor datasets, TSC outperforms all of the

other approaches.

Rossetti et al. also evaluate TC and TSC to predict the ratings of reviews using

only the text. For this task, TSC shows the best performance. This makes sense

since TSC exploits sentiment words which reflect the polarity of the reviews,

thus helping to better predict ratings.

Summary In (Rossetti et al. 2013), two recommendation models that are built

on top of topic models are presented. These models build user and item profiles
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that have the size of the number of topics and then match them together in or-

der to make rating predictions. The TSC approach is especially useful for rating

prediction from reviews: by exploiting sentiment words, better predictions can

be made. The advantage of the presented models is that they are completely

unsupervised.

We saw how users and items are mapped into a common latent space that is

determined by the topic model, which is built using only reviews. The model

could be improved by also capturing the interaction between users and items

by using ratings directly, as is done in matrix factorization. This would result

in a model that contains both a review-based latent space and a rating-based

latent space.

Besides using their model for rating predictions, Rossetti et al. also use their

model to analyze and interpret topics and to suggest ratings for reviews. The

analysis part can be useful for explanations. However, no evaluation metrics re-

garding the interpretation of models are presented (only one selected example

is presented), so there is no way to know how good or bad this feature is. This

is a common drawback that we also found in (McAuley & Leskovec 2013, Ling

et al. 2014, Diao et al. 2014).

2.2.2 Feature extraction approaches

Feature extraction approaches deal with the task of extracting useful features

from free-form text reviews. These features are used, along with ratings, to

make predictions. Because reviews are written in an unstructured way, feature

extraction can become complex and techniques from Natural Language Process-

ing (NLP) are often used. It is common to see techniques such as part-of-speech

(POS) tagging, stop-word removal, stemming, lemmatizing and representing

documents as bags of words (Aggarwal 2016). These techniques can be used to

extract product and user features, sentiments or even to predict the quality of

the reviews themselves (Chen et al. 2015).

In this section we will explore the approaches that use feature extraction tech-

niques to exploit the information contained in reviews and produce better rec-

ommendations.
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2.2.2.1 Cold Start Context-Based Hotel Recommender

Goal The goal of the model presented in (Levi et al. 2012) is to build a rec-

ommender system that can provide cold-start recommendations for hotels.

Contribution Cold Start Context-Based Hotel Recommender (CSCB) analyzes

the information contained in reviews to extract common traits of user groups

in order to make recommendations for users that share a set of characteristics.

These characteristics include the intent of the trip and the nationality of the

users. CSCB extracts these traits and uses them to make recommendations that

bring higher satisfaction to users compared to hotel web services.

Differences with other approaches CSCB is different to other approaches

that use demographics to make recommendations, such as (Lam et al. 2008,

Park & Chu 2009), because CSCB incorporates features extracted from reviews

into the recommendation model, whereas (Lam et al. 2008, Park & Chu 2009)

require that the features are already given.

Notation The CSCB model uses the following notation:

Table 2.12: Notation of CSCB.

Symbol Description

u A user
i An item
τ A review
s A sentence
f A feature
op An opinion word
orop The sentiment orientation of the opinion word op

Model Levi et al. propose an heuristic-based recommender system that ex-

tracts information from textual reviews in order to recommend hotels (Levi

et al. 2012). The recommender system is called CSCB. The steps CSCB takes

are: extract features, calculate feature weights for nationalities and intents,

build aspects from features and calculate the weight of aspects, calculate the

feature opinion orientations, and finally calculate the hotel score. In CSCB

users are asked to provide information about their nationality, trip intent and

preferences towards the mined aspects.

52



2. STATE OF THE ART 2.2 Unsupervised Review-Based Approaches

The first thing Levi et al. do is extract features from reviews at a sentence

level. So they perform part-of-speech tagging for each sentence and keep only

the nouns and noun phrases. Subsequently, Levi et al. try to determine the

importance of each feature for each nationality group and intent group. They

do this by assigning a weight to each feature depending on how frequent the

feature appears in the sentences written by the user or nationality group or

intent group. At the end of this process they obtain a series of weights ϕfc
where f is a feature and c can be either a nationality or an intent.

The next step is to determine the aspects that compose the items. This is done

by clustering the features into six clusters; each one of the clusters represents

an aspect. One thing to note about the clustering algorithm is that features can

belong to one and only one cluster.

To calculate the feature opinion orientation, Levi et al. first manually define

a seed list of adjectives and assign an orientation score of (-1,+1) to each of

them. Then, the seed list is enlarged by finding synonyms and antonyms using

WordNet (Miller et al. 1990). The seed list grows in the process. In that way,

all opinion words will have an orientation. To calculate the score of a feature f

in a sentence s the following function is used:

score(f, s) =
∑
op∈s

orop
d(op, f) , (2.40)

where orop is the orientation (+1,−1) of the opinion word op, dist(op, f) is the

distance (word count) between the opinion word or and the feature f in the

sentence.

To calculate the review score, first a total weight must be calculated. This is

done by:

ϕfu = ϕfup + ϕfun + ϕfupref , (2.41)

where ϕun is the nationality weight, ϕup is the intent weight and ϕupref is the

weight based on the user preferences. To produce the score of a review, the

score of each feature f in each sentence s of review τ written by user u is
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calculated like this:

score(τ, u) =
∑
s∈τ

∑
f∈s

ϕfu (2.42)

Finally, using an aggregation function (see (Levi et al. 2012) for details), the

hotel score is calculated.

Evaluation CSCB is evaluated on two datasets, one from TripAdvisor that

contains 84968 reviews about 1930 hotels, and another dataset from Venere

that contains 52266 reviews about 1845 hotels. The data was collected from

four cities in Europe: Munich, Berlin, Rome and Milan. The datasets are not

publicly available.

To evaluate CSCB, Levi et al. run a user study using an online evaluation

methodology similar to (Hayes & Cunningham 2002). In the study, CSCB was

compared against Venere and TripAdvisor. The system was evaluated by 150

users.

In each experiment, the user is asked for the intent of her trip, her nationality,

her preferences towards the aspects and a price range. Then the user is pre-

sented with a list of six hotels. Some of the hotels are recommended by CSCB

and others are recommended by the other systems. For each of the hotels, the

user is asked “Would you select this hotel?” and is also asked to provide a

rating for the recommended hotel. Results show that 60.2% of the recommen-

dations provided by CSCB are accepted by the users compared to 50.8% of the

recommendations provided by the other systems.

Summary The main advantage of this work is that features and aspects are

extracted in an unsupervised fashion. These aspects are then integrated into

the recommendation model leading to increased user satisfaction.

We note that Levi et al. have referred to the nationality and intent group as con-

textual information, but in our view the nationality is not contextual. Therefore,

we did not include this review as part of the context-aware approaches (Section

2.3).

Many things can be improved. The first is that it is hard to pin down the effect

of context in this work because Levi et al. have a rather questionable defini-
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tion of what context is. They define a personal characteristic of a user –the

nationality– as a contextual dimension. If we more narrowly, treat contexts as

the circumstances of item consumption, then the nationality of a user, which is

something that does not change (often) over time, should not be considered as

a contextual dimension, even if it has an influence on how a user perceives an

item.

Another disadvantage is that user intent has a pre-defined and rather limited

set of values (constrained by the datasets used in the evaluation). The only

permissible values are for the following five scenarios: family, couple, group,

single and business. We understand that this information is obtained from the

datasets used, but in the real world, intent is wider than just those five op-

tions. Other models such as (Chen & Chen 2015) have successfully extracted

contextual situations from user reviews.

We also consider that the way aspects are created can be improved. The fact

that one feature can only belong to one aspect is a serious drawback, since one

feature can be used in different contexts. For instance, the feature “swimming

pool” can be used in the context of spa, but also in the context of summer family

holidays with kids. Having equal importance for all the features within the

same aspect is also a problem, since one feature may represent an aspect better

than another one. Both problems can be solved by removing the constraint of

having only one feature per aspect and assigning weights to each feature within

a cluster. This type of approach is commonly used in topic modeling, where a

word has a probability of belonging to a topic, and each word belongs to all of

the topics with a different probability.

Finally, the CSCB is never compared against state-of-the-art methods. CSCB

is compared against the TripAdvisor.com and Venere.com websites, but we do

not have any details about how the recommender systems of those websites

are implemented. A better designed user study would have compared their

implementation with at least one state-of-the-art method used as a baseline.

In the evaluation only an aggregate number of the performance of the other

systems is provided. Levi et al. state that the user satisfaction for the other

systems is 50.8%. It would be interesting to know what was the user satisfaction

for the recommendations provided by TripAdvisor and Venere individually.
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2.2.2.2 Opinionated Product Recommender

Goal The goal of (Dong et al. 2013, 2014, 2016) is to build a recommender

system that exploits the information contained in user reviews to make product

recommendations. The resulting recommender system is called an Opinionated

Product Recommender (OPR). The goal of OPR is to extract both features and

sentiment to provide recommendations for a query-based system.

Contribution OPR demonstrates that combining feature similarity between

items and sentiment can lead to better recommendations. OPR succeeds at

extracting item features from user-generated reviews, allocating sentiment to

those features and then finding similar items given the item features. This

approach can be used to find items that have higher sentiment scores across all

of the features of a query item.

Differences with other approaches Along with CSCB, OPR is one of the first

approaches to exploit the information contained in user-generated reviews to

provide recommendations. But, different from CSCB, OPR does not need the

user to provide personal information. Nevertheless, the model requires a query

item in order to provide recommendations. OPR also differs from CSCB in that

the provided recommendations are not personalized: they are not made for

specific users; they are made using a query product as a seed.

Notation The OPR model uses the following notation:

Table 2.13: Notation of OPR.

Symbol Description

i An item
τ A review
s A sentence
f A feature
Fi The set of features that compose item i
Υi The set of reviews made for item i

Model Dong et al. present a recommender system called OPR that extracts

features and sentiments from user reviews, uses them to generate cases to in-

clude them in a case-based reasoning model, and uses that model in order to

make better Top-N recommendations (2016).
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Dong et al. preprocess all the reviews and assign part-of-speech tags to each

word. They identify two types of features: bi-grams and single nouns. The bi-

grams they consider are in the form adjective-noun (AN) (e.g. hard drive, wide
angle) or noun-noun (NN) (e.g. video mode). For the AN form, bi-grams whose

adjective is a sentiment word are discarded to avoid including ANs that are

actually a single-noun feature accompanied by an opinion (e.g. excellent, awful).
Single nouns that are rarely associated with sentiment words are unlikely to

describe item features (Hu & Liu 2004) and, for that reason, they are excluded

from the single noun features.

The sentiment of a feature is assigned at a sentence level. For each feature f in

a sentence s, OPR looks for any sentiment words. In case there are none, they

assign f a neutral score, but in case there are, they take the closest sentiment

word wmin to f and assign f the sentiment of wmin.

There are a couple of exceptions in which the sentiment can be changed. In the

first scenario, if there are any negation words within a 4-word distance of wmin,

then the sentiment is inverted. The second exception is based on the opinion
pattern technique introduced by (Moghaddam & Ester 2010). This technique

identifies POS tags patterns between a sentiment word wmin and a feature f .

For example, the sentence “the speaker has great audio quality” has a pattern

JJ-FEATURE (where JJ stands for adjective). Here “great” is the adjective and

“audio quality” is bi-gram feature. The frequency for every pattern that appears

is counted and then the patterns that are below a certain frequency threshold

are eliminated. For each occurrence of the eliminated patterns, neutral senti-

ments are assigned.

The next step consists of generating experiential item cases to add to a case

base. Each item case is composed of the features of the item f ∈ Fi, the sen-

timent associated to each of the features and the popularity of each of the fea-

tures for that item. Features that are mentioned in less than 10% of the reviews

are removed.

sentiment(i) = positives(f, i)− negatives(f, i)
positives(f, i) + negatives(f, i) + neutral(f, i) , (2.43)

popularity(f, i) = |{τ ∈ Υi : f ∈ τ}|
|Υi|

, (2.44)
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case(i) = {[f, sentiment(f, i), popularity(f, i)] : f ∈ Fi}, (2.45)

where Υi is the set of reviews made for item i, and positives(f, i), negatives(f, i)
and neutral(f, i) are functions that count the number of times feature f has a

positive, negative or neutral sentiment associated with it in the reviews for item

i, respectively.

Once the cases have been built, recommendations can be made. There are

three ways of doing this: using a content-based recommendation strategy, ex-

ploiting the information about the sentiment of the features, and using a hybrid

approach.

The content-based recommendation strategy uses the cosine metric to measure

the similarity between a query item i and a candidate item i′ in the case base

based on the popularity levels of each of the items’ features, like this:

similarity(i, i′) =

∑
f∈Fi∪Fi′

popularity(f, i) · popularity(f, i′)√ ∑
f∈Fi

popularity(f, i)2 ·
√ ∑
f∈Fi′

popularity(f, i′)2
(2.46)

In (Dong et al. 2013), Dong et al. also attempted to measure the similarity

based on the sentiment by replacing popularity by sentiment in equation 2.46.

For the sentiment based recommender, the improvement of the feature f of

a candidate item i′ over a query item i is calculated by using the following

formula:

better(f, i, i′) = sentiment(f, i′)− sentiment(f, i)
2 (2.47)

Subsequently they calculate an overall ‘better’ score by averaging the scores of

all the features that i′ and i have in common:

b1(i, i′) =

∑
f∈Fi∩Fi′

better(f, i, i′)

|Fi ∩ Fi′|
(2.48)

An alternative formula includes all the features of i′ and sets the sentiment
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value of non-shared features to zero:

b1(i, i′) =

∑
f∈Fi∪Fi′

better(f, i, i′)

|Fi ∪ Fi′|
(2.49)

Finally, one last recommendation method is proposed, this method merges both

content-based and sentiment-based approaches:

score(i, i′) = (1− λ) · similarity(i, i′) + λ ·
(
sentiment(i, i′) + 1

2

)
, (2.50)

where λ controls the weight given to the case-based part versus the sentiment

part. Note that Dong et al. add 1 to the right part of the equation and divide by

2. This is done to normalize its values, because the sentiment function returns

values in the range [−1, 1] whereas the similarity function returns values in the

range [0, 1].

Evaluation To evaluate OPR, Dong et al. used six datasets from six different

types of devices: cameras, GPS, laptops, phones, printers and tablets. All of the

reviews were collected from Amazon. The datasets are not publicly available.

A summary of the datasets can be seen in Table 2.14.

Table 2.14: Datasets used to evaluate OPR.

Category # Reviews # Products

Cameras 9355 103
GPS 12155 119
Laptops 12431 314
Phones 14860 257
Printers 24369 233
Tablets 17936 166

Dong et al. propose a way of evaluating the recommendations by comparing

their recommendations against Amazon’s recommendations. To achieve this,

an item is taken as the seed and Amazon will suggest other items based on the

seed item. OPR then tries to find items that are equally similar or more similar

to the seed item (the similarity being measured based on the mined features)

and have higher overall ratings. Results show that indeed OPR is able to find

items that are equally or more similar to the ones that Amazon suggested and
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have higher overall ratings. In (Dong et al. 2014), the model is also tested using

a TripAdvisor dataset having similar results.

Summary OPR is able to extract item features from reviews and link the fea-

tures with sentiments in order to provide recommendations for similar items.

One strength is that OPR discards nouns that do not relate to sentiments, leav-

ing only features that users qualify with sentiments. It also considers negation

words. Another strength is that it measures the score for each feature of the

item. This allows it to recommend another item that has higher scores in all of

the features or in the ones that are important for the user. The feature extrac-

tion is an unsupervised process. Without the need for explicit item descriptions,

this approach is capable of finding similar items by mining item features from

the reviews.

A disadvantage of OPR is that it gives the same weight to all sentiment words.

For example, the phrases “slow service” and “horrible service” would have the

same sentiment score; “good screen resolution” and “amazing screen resolu-

tion” would also have the same score. The formulae used in OPR do not con-

sider the distance between the feature and the sentiment word in the sentence,

which seems questionable. An obvious disadvantage of OPR is that the recom-

mendations are not personalized; a seed item is needed to make recommen-

dations. As a matter of fact, the user is never included as part of the model.

Finally, the major disadvantage of OPR is that it does not incorporate ratings

information into the recommendation model, losing a large amount of valuable

information that has proven to be useful for recommending items.

On the evaluation side, one major disadvantage is that the results are compared

in relation to Amazon’s performance, as if Amazon’s recommendations were the

ground truth. This is a very unusual way to present recommendation results.

The real ground truth are the users’ preferences, not Amazon’s predictions. This

way of evaluating does not permit to know if the suggestions of this model are

better than Amazon’s suggestions.

2.2.2.3 Multi-Criteria Aspect-Based Sentiment Analysis

Goal The goal of (Musto et al. 2017) is build a multi-criteria recommender

system that extracts information from user reviews in order to have a multi-

faceted representation of the users’ interests. To achieve this goal, they present
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the Multi-Criteria Aspect-Based Sentiment Analysis (MCABSA) recommender

system.

Contribution The contributions of (Musto et al. 2017) are that the MCABSA

recommender is able to extract the aspects from the reviews in an unsupervised

way. Furthermore, they are able to identify subaspects, which gives MCABSA a

finer-grained representation of the users’ interests. MCABSA is able to outper-

form several state-of-the-art techniques in terms of prediction accuracy.

Differences with other approaches Similarly to the OPR model presented in

(Dong et al. 2013, 2014, 2016), MCABSA is able to extract aspects (which are

called features in OPR) from reviews in an unsupervised way. Also similarly to

OPR, MCABSA assigns sentiment scores to the extracted aspects (or features)

using the information contained in the reviews. Differently from OPR, MCABSA

incorporates the ratings into the recommendation model, making it possible to

produce personalized recommendations. Unlike OPR and CSCB, MCABSA is

also able to predict ratings; the former two models are only useful to predict

rankings of items.

Notation The MCABSA model uses the following notation:

Table 2.15: Notation of MCABSA.

Symbol Description

u A user
i An item
ru,i The rating that user u gave to item i
w A word
a An aspect
ςa,u′,i The sentiment score that user u has for aspect a of item i
S A corpus containing a collection of documents

Model Musto et al. present MCABSA, a recommender built on top of the

Sentiment Aspect-Based Retrieval (SABRE) framework (Caputo et al. 2017).

This framework takes a list of documents and extracts a list of aspects and the

sentiments associated with those aspects. Having that, Musto et al. use a k-NN-

based algorithm to make rating predictions.

SABRE extracts aspects from documents based on the idea that different words

are used when describing general topics from those used to describe more spe-
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cific topics (Caputo et al. 2017). The goal is to identify the aspects that have a

different distribution within a specific collection of documents, such as a dataset

of hotel reviews, compared to the aspects in a general language dataset, such

as the British National Corpus5. Two types of aspects are extracted, called main

aspects and sub-aspects, that follow a hierarchical relation. Main aspects are

more general, whereas sub-aspects are more specific and belong to a main as-

pect.

To find the aspects that are relevant to a specific domain, Caputo et al. first

perform part-of-speech tagging on the documents and then consider only nouns

as the candidate words for aspects. Subsequently, they calculate the Kullback-
Leiber divergence to find out how relevant the word w is for the specific domain.

To calculate the pointwise Kullback-Leiber divergence (giving the relevance of

a word), they use:

δw(Sa‖Sb) = p(w,Sa)log
p(w,Sa)
p(w,Sb)

, (2.51)

where w is a word and Sa and Sb are two corpora. In this work, Sa is the reviews

corpus and Sb is the British National Corpus. p(w,Sa) can be calculated as the

count of times that word w appears in corpus Sa, divided by the total count of

words:

p(w,S) = freq(w)∑
w′∈S freq(w′)

. (2.52)

When the relevance δw of a word w for corpus Sa is higher than a given thresh-

old ε, the word is labeled as a main aspect; otherwise, the word is discarded. In

this way, every review τ will contain a set of main aspects aτ,j ∈ A, where aτ,j
is the j-th main aspect of review τ , and A is the set of all main aspects in the

corpus.

To extract the sub-aspects, Caputo et al. calculate the phraseness and informa-
tiveness of each word that appears in a review τ , as given by (Tomokiyo & Hurst

2003). Then, for each word the phraseness and informativeness are aggregated

together into a variable called relevance weight, denoted by ϕ. For each main

aspect aτ,j, they go through all the words wk (the nouns in this particular case,

even the ones labeled as main aspects) in the review τ and calculate the rele-

5http://www.natcorp.ox.ac.uk/
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vance weight ϕ. If ϕ is greater than a threshold γ, then the word wk is labeled

as a sub-aspect of aτ,j; otherwise, wk is discarded.

Once the main aspects and sub-aspects have been extracted, they are assigned

a sentiment score by a lexicon-based algorithm that uses the AFINN wordlist

(Musto et al. 2014). Thus, for every aspect (both main aspects and sub-aspects),

a sentiment score ςa,τ for aspect a in a review τ is obtained.

Having the sentiment score, a k-NN rating prediction is made. First the simi-

larity between two users is measured as the inverse of the distance, which is

calculated as:

dist(u, u′) = 1
|I(u, u′)| ·

∑
i∈I(u,u′)

overall_dist(ru,i, ru′,i) (2.53)

where I(u, u′) are the items that u and u′ have rated jointly and ru,i is user

u’s rating for item i. Then, the overall distance is calculated for the n aspects

mentioned in both reviews, as in (Adomavicius & Kwon 2007), like this:

overall_dist(ru,i, ru′,i) =
√√√√ n∑
a=1
|ςa,u,i − ςa,u′,i|2 (2.54)

where ςa,u,i is the sentiment score for aspect a in the review about item i made

by user u. Finally, the rating prediction is made by using the weighted sum
approach as in (Adomavicius & Kwon 2007), like this:

r̂u,i =
∑
u′∈Û

sim(u, u′) · ru′,i

|sim(u, u′)| (2.55)

Evaluation To evaluate MCABSA, Musto et al. use three datasets from three

different platforms: Yelp, TripAdvisor and Amazon. The Yelp dataset contains

229906 reviews and ratings made by 45981 users about 11537 items. The TripAd-

visor dataset contains 796958 reviews and ratings made by 536952 users about

3945 items. The Amazon dataset contains 1324759 reviews and ratings made by

826773 users about 50210 items. MAE is used to evaluate the performance of

MCABSA, and it is shown to have better performance than Matrix Factorization

approaches.
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Summary This work has a few advantages, such as the fact that the unsu-

pervised extraction of aspects and sub-aspects is novel. Regarding the evalua-

tion, the approach is tested using three different publicly available datasets and

RiVaL (Said & Bellogín 2014) is used, which brings confidence to the results.

For all of the datasets, they have a better performance in terms of MAE than

other state-of-the-art approaches.

2.2.3 Summary

In this section, we have reviewed seven review-based recommender systems;

four of them are generative models (McAuley & Leskovec 2013, Ling et al. 2014,

Diao et al. 2014, Rossetti et al. 2013) and three of them are feature extraction

models (Levi et al. 2012, Dong et al. 2016, Musto et al. 2017). A classification

of these seven review-based recommenders can be seen in Figure 2.2.

All of the four generative models are probabilistic models that use or are de-

rived from the LDA model (Blei et al. 2003). Only (Diao et al. 2014) does not

constrain the number of latent factors to be the same as the number of topics.

On the other side, all of the heuristic models are focused on extracting features

and assign scores to those features by identifying sentiment words and looking

at the distance of the sentiment words to the features. The main properties of

the models reviewed in this section are summarized in Table 2.16.

Review-based	
recommenders

Generative	
Models

HTF RMR JMARS TC	&	TSC

Feature	
extraction

CSCB OPR MCABSA

Figure 2.2: Classification of review-based recommenders

On the evaluation side, as we can see in Table 2.16, these recommender systems

fix one of the most common problems present in the evaluation methodology

of CARS, the lack of real-world data. All seven used real-world datasets in their
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evaluation. However, one problem regarding the evaluation methodology of all

of the recommenders, is that only one of them evaluates its performance using

Top-N metrics.

Table 2.16: Summary of the unsupervised review-based recommenders that we
have reviewed.

Model Type Topic-factor Feature/aspect Sentiment Evaluation Real-world

Independence extraction analysis Rating Top-N data

HFT Generative 3 3

RMR Generative 3 3

JMARS Generative 3 3 3 3 3

TC & TSC Generative 3 3 3

CSCB Heuristic 3 3 3

OPR Heuristic 3 3 3 3

MCABSA Heuristic 3 3 3 3

In the next section we will review two approaches that are context-aware but

also are able to extract information from user-generated reviews. These are the

closest approaches to what we want to achieve with our own research.

2.3 Review-Based Context-Aware Approaches

This section explores the proposals closest to what we want to achieve: context-

aware recommendations that exploit consumer reviews. We take a look at the

papers that merge these two concepts with the intention of extracting new ideas

and identifying the gaps that will lead us to produce a novel model.

2.3.1 Context Discovery

Goal The goal of (Bauman & Tuzhilin 2014) is to develop a method to dis-

cover contextual information from user-generated reviews. This contextual in-

formation can then be used to provide better recommendations. The model

that Bauman & Tuzhilin introduced is called Context Discovery.

Contribution The contribution of (Bauman & Tuzhilin 2014) is that it

presents two methods for the extraction of contextual information. The first

method is based on word semantics and the second one is based on topic mod-

eling. Bauman & Tuzhilin state that these methods are complementary. The
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most important contribution of this paper is that both methods are unsuper-

vised and do not require a set of pre-defined keywords to extract the contextual

information, which most CARS do.

Differences with other approaches Although the ultimate goal of this work

is to produce better recommendations, the paper focuses on the extraction of

contextual information from reviews, leaving open the question of how this

might be used in a recommender system. Having said that, this method is

different from all of the proposals that we reviewed in Section 2.1 because

it does not need the contextual information to be pre-defined. The way the

context is extracted is totally unsupervised. It is also different from (Levi et al.

2012) and (Chen & Chen 2015) because it does not requires a list of manually

defined words. By contrast, the work in (Levi et al. 2012) requires a list of

seed adjectives for the sentiment words and the work in (Chen & Chen 2015)

requires a list nouns for the aspects. In that sense, Context Discovery is more

similar to (Dong et al. 2016) and (Musto et al. 2017), both of which do not

require pre-defined keywords.

Notation The Context Discovery model uses the following notation:

Table 2.17: Notation of Context Discovery.

Symbol Description

u A user
i An item
w A word
t A topic
τ A review
Wτ The set of words that belong to review τ
Tτ The set of topics that belong to review τ

Model Bauman & Tuzhilin propose a method called Context Discovery to ex-

tract contextual information from reviews. The goal of this paper, unlike the

ones described up until now, is not to produce recommendations, but to dis-

cover contextual information from user-generated reviews. They propose two

methods to achieve this, a word-based approach and a LDA-based approach.

Both methods are based on the assumption that there are two types of reviews:

specific and generic. Specific reviews describe detailed experiences about vis-

its to a place (hotel, restaurant, spa, etc.) whereas generic reviews give short

impressions of the places.
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Based on this, the first step in the proposed model is to separate specific from

generic reviews. To do this, Bauman & Tuzhilin use the well-known k-means

clustering method with k = 2, placing specific reviews in one of the clusters

and the generic ones in the other. To make the clustering possible, certain

features of the reviews are extracted. For this paper in particular, the number

of sentences, the number of words, the number of verbs, the number of verbs

in the past-tense and the ratio between the number of verbs and the number

of verbs in the past-tense are used. To all of them the logarithm function is

applied.

Once the reviews have been clustered, the word-based or the LDA based ap-

proach can be used to extract the contextual information.

For the word-based approach the words that are nouns in the reviews are iden-

tified and, for each word, the weight of that word among specific reviews ϕs(w),
among generic reviews ϕg(w) and among all reviews ϕ(w) are calculated. The

weight is calculated by counting the frequency of w among that type of review

(specific, generic or all) and dividing it by the total count of that type of review.

In other words:

ϕtype(w) = |τ : τ ∈ type and w ∈ Wτ |
|τ : τ ∈ type| , (2.56)

where τ is a review and Wτ is the set of words that belong to review τ .

Once this is done, the words w that have an overall frequency lower than a

certain threshold α (ϕall(w) < α) are removed. In (Bauman & Tuzhilin 2014),

α was set to 0.005. For each word w, the ratio between specific and generic

weights is also calculated as ratio(w) = ϕs(w)
ϕg(w) and words with a ratio lower than

a threshold β (ratio(w) < β) are removed. In (Bauman & Tuzhilin 2014), β

was set to 1.0.

For each of the remaining words, a set of senses is found using WordNet. The

set of senses is the set of meanings that a word can have; for instance a bank

could mean the place where people store money or the land alongside of a river.

Then WordNet is used to determine the senses which have very close meanings

and they are grouped together. Words with several distinct meanings can be

represented in several distinct groups. Then for each group g the frequency
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weight ϕtype(g) is calculated as:

ϕtype(g) = |τ : τ ∈ type and g ∩Wτ 6= 0|
|τ : τ ∈ type| (2.57)

Then the ratio between specific and generic reviews is calculated for each group

g as ratio(g) = ϕs(g)
ϕg(g) . Finally the groups are sorted by ratio(g) and presented

in descending order. Groups that have a higher ratio are supposed to contain

more contextual information than the ones that have a lower ratio.

For the LDA-based approach, a topic model is built using LDA on only the spe-

cific reviews. Then the topic model is applied to all of the reviews. This results

in every review being represented by a stochastic vector of size k, where k is

the number of topics. Each cell of that vector will contain the probability of

the topic t for the given review τ , p(t|τ). For each review τ , the topics with

probability lower than threshold ε are discarded p(t|τ) < ε.

The result of the word-based approach is a list of words that are sorted by ratio

in descending order.

Similarly to the word-based approach, in the LDA-based approach, the weights

of the topics t are calculated like this:

ϕtype(t) = |τ : τ ∈ type and t ∈ Tτ |
|τ : τ ∈ type| (2.58)

Then the topics with overall frequency lower than α are removed ϕall(t) <

α. Subsequently, and similarly to the word-based approach, the ratio of the

topics is calculated as ratio(t) = ϕs(t)
ϕg(t) and then topics with a ratio lower than

a threshold β are removed ratio(t) < β. As in the word-based approach, α =
0.005 and β = 1.0. The value of ε is not disclosed. Finally, the topics are sorted

by ratio and are presented in inverse order. The topics with higher values of

ratio(t) are supposed to contain more contextual information than the ones

with low values of ratio(t).

The result of the LDA-based approach is a list of topics that are sorted by ratio

in descending order.

Evaluation To evaluate Context Discovery, Bauman & Tuzhilin use three

datasets from Yelp that were provided for the ACM Conference on Recomender
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Systems Challenge 2013. They contain reviews and ratings for restaurants, ho-

tels and beauty & spas. The restaurants dataset contains 158430 reviews by

36473 users about 4503 items. The hotels dataset contains 5034 reviews by 4184
users about 284 items. The beauty & spas dataset contains 5579 reviews by 4272
users about 764 items. To evaluate the performance of the clustering, they man-

ually labeled 300 reviews as specific or generic for each of the datasets (900 in

total). Using the clusters, they were able to correctly identify the reviews in

89%, 88% and 90% of the cases for the hotels, restaurants and beauty & spas

datasets, respectively.

To evaluate the word-based approach, the resulting list of words sorted by ra-

tio in descending order is taken. Bauman & Tuzhilin manually identify the

first occurrence of a contextual word and assign it to a contextual category

that has been previously defined. They show that for most of the categories,

the algorithm has extracted contextual words related to each category. A sim-

ilar approach is used to evaluate the LDA-based approach. However, Bauman

& Tuzhilin did not compare the Context Discovery method against any other

method.

Summary Context Discovery extracts contextual information from user-

generated reviews. The biggest advantage of Context Discovery, for both the

word-based and LDA-based methods, is that it does not require a pre-defined set

of contextual dimensions or contextual keywords; it learns the context. How-

ever, the model has several drawbacks. First of all, it cannot produce recom-

mendations by itself. It does not address the problem of topic modeling that,

when a topic model is trained twice on the same data with different random

seeds, the results can be very different, which lead to results that are not easy

or impossible to replicate. And finally, it does not incorporate ratings informa-

tion into the model.

Regarding the evaluation methodology, the performance metrics presented are

too vague and virtually impossible to reproduce. Finally, Bauman & Tuzhilin do

not compare Context Discovery against any system, not even a random baseline.

2.3.2 Contextual Opinions Recommender

Goal The goal of the model presented in (Chen & Chen 2015) is to intro-

duce a recommender with improved performance by obtaining the aspect-level
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contextual preferences from user-generated reviews and ratings.

Contribution Contextual Opinions Recommender (COR) is able to extract

item aspects from reviews and relate contextual situations directly to aspects.

This gives a more fine-grained representation of the users’ preferences. We

believe that COR is the first approach to model aspect-context preferences.

Differences with other approaches Similarly to the OPR model proposed

in (Dong et al. 2016) and to the MCABSA model proposed in (Musto et al.

2017), COR extracts aspects (or features) from user-generated reviews. But

differently from the two former approaches, COR requires a list of keywords

to determine the aspects that are part of a review. As mentioned earlier, this

approach is unique in the sense that it models the aspect-context preferences

of users, and it uses context-dependent and context-independent preferences to

produce Top-N recommendations.

Notation The COR model uses the following notation:

Table 2.18: Notation of COR.

Symbol Description

u A user
i An item
τu,i The review that user u wrote about item i
s A sentence
a An aspect
f An aspect-related term
op An opinion word
k A contextual condition
τu,i The review that user u wrote about item i
ςop The sentiment score associated with opinion word op
K A set of contextual conditions
|A| The number of aspects
k A vector of contextual values
ϕu A vector containing the weights that user u gives to each aspect

Model The approach presented in (Chen & Chen 2015) can be presented in

four parts. The first part deals with the extraction of context from the user-

generated reviews. In the second part, the context-independent preferences of

the users are inferred. In the third part, the context-dependent preferences are

inferred. The final part is the ranking and recommendation part, where the
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context-independent and the context-dependent preferences are combined to

produce recommendations.

Part I: Extracting context To extract aspect-related contextual opinions,

Chen & Chen propose a method composed of four steps. The first step deals

with the identification of aspects and uses a heuristic-based technique based on

bootstrapping to extract the aspects from the reviews. In this technique, a num-

ber of aspects is first defined and then each aspect is assigned a set of terms as

seed words. Then, candidate terms are searched and selected by measuring the

dependency between a candidate and a seed term using the chi-square statis-

tic as proposed in (Yang & Pedersen 1997). Only nouns and noun phrases are

considered as candidate terms. As a result, a set of aspect-related terms are

obtained. An aspect-related term is a word that is directly correlated with an

aspect. For instance, the aspect “service” of a restaurant can have aspect-related

terms like “service”, “staff”, “waiter”, etc.

The second step extracts the opinion orientation for each aspect. This opinion

orientation is extracted by looking at adjectives. Using an opinion lexicon, each

adjective is assigned a numeric score of +1 or −1 depending on whether it is

positive or negative. Then, for each aspect-related term f , and each sentence

s, a score is calculated as score(s, f) = ∑
op∈s ςop/dist(op, f), where op is an

opinion word in a sentence, ςop is the sentiment score of op and dist(op, f) is the

number of words between opinion word op to aspect f plus one. Additionally,

when a negation word is found in the sentence or a “but” is found, then the

opinion score is inverted.

The third step extracts the context at a sentence level. To do this, a set of

keywords are defined for every contextual situation. If any of the keywords of

a contextual situation are present in a sentence, then that sentence is labeled

with the corresponding context value.

The fourth and last step relates aspects with context, which is done in two

ways. First, if an aspect-level opinion and a context are together in the same

sentence, then they are related. If there is no context in the sentence, then the

aspect level opinion is related to the context of the nearest previous sentence.

Then for each context, all the opinions of an aspect that are related to that

context are summed.
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Part II: Inferring context-independent preferences The context-independent

preferences are the preferences of the user towards the aspects, and are repre-

sented by ϕu = 〈ϕu,1, . . . ϕu,|A|〉, which is a vector that contains the weights that

user u gives to each aspect. To infer the context-independent preferences, Chen

& Chen introduce two variants, a Linear Regression Model (LRM) based model

and Probabilistic Regression Model (PRM) based model.

In LRM the ratings are modeled as a weighted function of the aspects, like this:

rτu,i = ϕ>u ru,τu,i + ε (2.59)

where ru,τu,i = 〈ra1 , . . . , ra|A|〉 is a rating vector, in which raj(1 ≤ j ≤ |A|)
represents the opinion that user u assigned to aspect aj in review τu,i, |A| is the

number of aspects, and ε denotes the error term. In this paper, linear least-

square regression is used to infer the context-independent preferences.

Similarly to LRM, PRM models the relation between the rating and the aspects’

opinions as a regression problem. PRM models this as a Bayesian problem in

order to incorporate prior knowledge. ε is drawn from a Gaussian distribution

with mean 0 and variance σ2: ε ∼ N (0, σ2). The overall rating is treated as a

sample drawn from a Gaussian distribution with mean ϕ>u ru,τu,i and variance

σ2, like this:

p(rτu,i|ϕu, ru,τu,i) = N (rτu,i|ϕ>u ru,τu,i , σ2) (2.60)

Chen & Chen solve the PRM model using the expected maximization algorithm.

Part III: Inferring context-dependent preferences To obtain the context-

dependent preferences, the focus is turned on learning the aspect-context

weights ϕa,k. It is very important to note that the context-dependent prefer-

ences are not user-specific. The learning of the aspect-context weights is based

on the observation that if an aspect appears more frequently than others in re-

views that belong to a certain context, then this aspect should have a higher

weight because it is more important than the others. Based on this, the follow-
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ing formula is introduced:

freqa,k =
∑
τ∈Υ

∑
s∈τ ∆s,k ·

(∑
f∈s Θf,a

)
∑
τ∈Υ

∑
s∈τ ∆s,c ·

(∑
f∈s 1

) (2.61)

where f is an aspect-related term, s is a sentence and τ is a review, Υ denotes

the set of all reviews, ∆s,k is an indicator function whose value is 1 when the

sentence s is related to context k and 0 otherwise, and Θf,a is an indicator

function whose value is 1 if the term f is related to aspect a and 0 otherwise.

Then the aspect’s average frequency is calculated as avga = ∑
k∈K freqa,k/|K|

and the standard deviation as stdva =
√∑

k∈K(freqa,k − avga)2/|K|, where K is

the set of context values and deva,k = freqa,k − avga. Finally the aspect-context

weight ϕa,k is calculated using the following equation:

ϕa,k =


1, if |deva,k| < stdva

Max
(
0.1, 1/

∣∣∣deva,k
stdva

∣∣∣) , if deva,k
stdva

< −1

Min
(
3, deva,k

stdva

)
, else

(2.62)

Chen & Chen note that equation 2.61 does not distinguish the relative impor-

tance of the aspect-related term in different contexts, as users may assign dif-

ferent importance to an aspect-related term depending on the context. To over-

come this, they try out three techniques from the text categorization field. In

summary, they replace the Θf,a function by functions that calculate mutual in-

formation, information gain and the chi-square statistic.

Part IV: Producing recommendations Once both context-independent and

context-dependent weights have been obtained, recommendations can be pro-

duced. The following equation is used to calculate the score that the target user
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u would give to item i based on the review τu′,i:

score(u, τu′,i,k) =

(a) iterate through context-opinion tuples︷ ︸︸ ︷∑
〈i,τu′,i,a,Conu′,i,a〉∈S(τu′,i)

(b) calculate context-dependent preferences︷ ︸︸ ︷∏
k∈k

(1 + αa,k · ϕa,k)


· ϕu,a · ςa · g(Conu, Conu′,i,a)︸ ︷︷ ︸
(c) calculate context-independent preferences

(2.63)

where S(τu′,i) is the set of contextual opinion tuples derived from review τu′,i,

ςa is the opinion score of aspect a contained in the contextual opinion tuple

〈i, τu′,i, a, Conu′,i,a〉, k is a vector that contains the current target context of user

u, Conu is the boolean vector form of k, Conu′,i,a is a boolean vector whose

element value is 1 when the associated context occurs and 0 otherwise, and

g(Conu, Conu′,i,a) is an indicator function whose value is 1 if Conu ·Conu′,i,a 6= 0,

and 0 otherwise. In other words the g function makes sure that we are only

including information that is relevant to the target context for user u. Note that

to combine both types of preferences there is a parameter αa,k that controls

the contribution of each type of preferences. This parameter is learned using a

stochastic gradient descent method.

To have a better understanding of Equation 2.63 we divided it in three parts.

Part (a) simply iterates through all of the context-opinion tuples derived from

review τu′,i and sums the result. Part (b) iterates through all of the target

contexts and aggregates all the context-dependent preferences by multiplying

them. Finally, part (c) multiplies the preferences of user u towards aspect a by

the opinion score of aspect a, ςa, but only including instances where aspect a

appeared as part of the current target context of user u.

Subsequently, to calculate the score that user u will give to item i, we take the

average score of all of the reviews written about i.

score(u, i) = avgτu′,i∈R(i)[score(u, τu′,i, )] (2.64)

In the end, for a user u, the score for all candidate items is calculated and only

the top-N items with the highest scores are presented to the user.
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Evaluation To evaluate COR, Chen & Chen use two datasets. The first dataset

contains 357113 hotel reviews crawled from TripAdvisor, made by 30039 users

about 11405 items. This dataset is not publicly available. The second dataset

contains 237077 restaurant reviews made by 23152 users about 11485 items.

This last dataset is from Yelp and was published as part of the ACM Conference

on Recommender Systems Challenge 2013. COR is evaluated in terms of Top-N

performance using Hit Ratio and Mean Reciprocal Rank as the metrics. COR is

not compared against any other approaches, but the results report the perfor-

mance of different variations of COR, such as using PRM compared to LRM or

using different weighting methods like mutual information, information gain

or chi-square statistics. Across both datasets, the PRM approach combined with

the chi-square weighting method showed superior ranking prediction perfor-

mance.

Summary The novelty of COR lies in that it is able to model the users’ aspect-

context preferences and use them to make recommendations. An advantage

of COR is that both aspects of the items and the context are extracted from

user reviews. It is also able to learn both context-independent preferences and

context-dependent preferences. Nevertheless, it has a few disadvantages, such

as the fact that the context is pre-defined as a set of keywords and aspects

require a set of terms as seed words. No comparison of the model is made

against any state-of-the-art recommender system, nor a random baseline.

A few things can be improved. The preferences could be modeled both at an

aspect-based level and an item-based level, as is often done in matrix factor-

ization, where a bias is learned for the items and then also the factorized pa-

rameters are learned. A very important thing to note is that Chen & Chen state

that the context-dependent preferences are not user-specific. Having said this,

it would be good to explore the performance of the model if context-dependent

preferences are also dependent on user, thus learning weights in the form ϕu,f,a.

Overall, this is a very good paper and it is the closest one we have found to our

topic of extracting context from reviews in order to produce recommendations.

Our goal, however, is to extract the context in an unsupervised way so that we

remove the need for pre-defined contextual variables and pre-defined contex-

tual keywords.
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2.4 Summary

In this chapter we have explored a variety of models with the goal of identifying

elements that can help us create our own context-driven recommender that is

able to extract the contextual information from user-generated reviews without

the need to pre-define contextual variables or contextual keywords, allowing us

to have open-ended contextual information.

In Table 2.19 we have summarized the properties that we consider should be

included as part of an unsupervised context-driven recommender model. Simi-

larly, Table 2.20 contains the evaluation properties that we considered a recom-

mender should be subject to. Here, for the first time we mention Rich-Context,

our proposed recommender. As we can see in the last row of the two aforemen-

tioned tables, we make sure that Rich-Context meets all of the properties that

we have considered important.

Table 2.19: Summary of the model properties of the papers that we have re-
viewed.

Model Contextual Incorporates Learns Keyword-free Prediction
recommendations reviews context Type

Multiverse 3 3 Rating
CAMF 3 3 Rating
LCMF 3 3 Rating
DCR 3 3 Rating
DCW 3 3 Rating
CSLIM 3 3 Ranking
HFT 3 3 Rating
RMR 3 3 Rating
JMARS 3 3 Rating
TC & TSC 3 3 Rating
CSCB 3 Ranking
OPR 3 3 Ranking
MCABSA 3 3 Rating
Context Discovery 3 3 3 –
COR 3 3 3 Rating
Rich-Context 3 3 3 3 Rating

The work we have reviewed falls, for the most part, into one of two categories:

context-aware recommendations or review-based recommendations. Only COR

spans these two categories but, as we have explained before, COR requires

that a set of contextual keywords be pre-defined, which prevents contextual

information from becoming open-ended. Even though, Context Discovery is a

hybrid between review-based and context-aware approaches, as we explained

previously, it does not produce recommendations.

After reviewing all of the papers that are mentioned in this chapter, we have
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Table 2.20: Summary of the characteristics of the evaluations in papers that we
have reviewed.

Model SOTA Datasets

comparison Sparse Real-world Multiple Publicly available

Multiverse 3 3

CAMF 3 3

LCMF 3

DCR 3 3 3 3

DCW 3 3

CSLIM 3 3

HFT 3 3 3 3 3

RMR 3 3 3 3 3

JMARS 3 3 3

TC & TSC 3 3 3 3 3

CSCB 3 3 3

OPR 3 3 3

MCABSA 3 3 3 3 3

Context Discovery 3 3 3 3

COR 3 3 3 3

Rich-Context 3 3 3 3 3

identified a gap where we can make a contribution to the field. As we will

see in the following chapters, we will borrow from many of these proposals to

build Rich-Context, our own unsupervised context-driven review-based recom-

mender.

The next chapter introduces Rich-Context and gives a general overview of its

operation.
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Chapter 3

Rich-Context

After reviewing the state of the art, we identify ways we can make a contribu-

tion to work on CARS, based on lifting assumptions or limitations of the existing

work. Based on this, we set ourselves the goal of creating a recommender sys-

tem with the following inter-related features:

Treat contexts as open-ended The recommender should be capable of cap-

turing any type of contextual situation. Most Context-Aware Recommender

Systems only focus on making recommendations on a small, pre-defined set

of contextual variables, such as the purpose of a trip and the companion, and

each with a small set of possible values (contextual conditions). In real life,

there are more contextual variables and conditions that can affect how we per-

ceive an item (for instance, a restaurant might be pet-friendly, birthday, girls

night out, for children, etc.). Therefore, we want to capture all of these types

of contextual situations and conditions.

Work in an unsupervised fashion (no need for keywords) The recom-

mender should be able to extract all of the contextual information from the

user-generated reviews without the need for a set of pre-defined contextual

keywords. In other words it should be able to identify that a review is dis-

cussing a certain context (for instance, a family trip) without needing keywords

that describe that context. This implies that the recommender system is able to

act by itself without the intervention of an expert who defines the keywords. As

we will see in Chapter 4, the only moment that human intervention is needed

78



3. RICH-CONTEXT 3.1 Overview of the Model

is at the time of labeling reviews as specific or generic to train one of the com-

ponents of the recommender system.

Achieve good performance on sparse datasets The recommender should

be able to work on sparse datasets. This is very important as most real-world

datasets tend to be very sparse and, with the introduction of contextual vari-

ables, they become even more sparse. Approaches such as (Zheng et al. 2013)

have shown good performance on dense datasets but have not been tested on

sparse datasets. We want a recommender that is able to overcome the sparsity

problem.

Regarding the evaluation of the recommender, we set ourselves the goal of

having a recommender that performs better than the state of the art on sparse,

real-world datasets. We also evaluate on multiple datasets for robustness of

results. And we choose to use publicly-available datasets.

We designed and implemented a recommender system that covers all the afore-

mentioned features. This recommender system is called Rich-Context and in

this chapter we give an overview of how it works.

3.1 Overview of the Model

Rich-Context is a context-driven recommender system that extracts contextual

information from user-generated reviews. Differently to CARS, context-driven

recommender systems aim to produce recommendations for upcoming contex-

tual situations, while CARS do it for the context in which the user finds her-

self/himself at the moment. This allows the user to plan for consumption of an

item in the future (Pagano et al. 2016).

To extract the contextual information, Rich-Context works based on the prin-

ciple first exposed in (Bauman & Tuzhilin 2014) that there are two types of

reviews called specific and generic. Specific reviews tend to contain more con-

textual information than generic ones. Therefore, by identifying and separating

the reviews by type we are able to extract contextual information from user

reviews.

Our approach then consists of separating the reviews, extracting the context

and producing recommendations. To achieve this Rich-Context is composed of
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Reviews RCClassifier

Specific
Sentences

Generic 
Sentences

RCMiner Contextual
Topics

RCRecommender

Recommendations

UserText

Figure 3.1: An overview of the RC system

three main components called RCClassifier, RCMiner and RCRecommender. An

overview of Rich-Context can be seen in Figure 3.1.

To train Rich-Context we use a dataset composed of reviews and ratings in

which each review can be seen as the justification of why that rating was given

(McAuley & Leskovec 2013). Each record in the dataset 〈〈u, i, τu,i〉, ru,i〉 identi-

fies a user u ∈ U and an item (e.g. a hotel or restaurant) i ∈ I. It contains the

user’s review of the item, τu,i, and the user’s rating of the item, ru,i.

Since Rich-Context is a context-driven recommender system the user uwill have

to state his/her desired context through a query q. This query is in the form of a

short sentence describing the user’s intent, i.e. the context in which she intends

to consume the recommended item, e.g. “birthday dinner”. Based on this query,

the recommender system will retrieve a set of candidate items.

3.2 Classifying Reviews

The goal of RCClassifier is to classify reviews as specific or generic, similarly to

(Bauman & Tuzhilin 2014). Specific reviews are ones that describe experiences

whereas generic reviews give an overall overview of a product or service. Our

assumption is that, since there is no such thing as a context-less experience,

reviews that describe experiences, i.e., specific ones, will tend to have more

contextual information than generic reviews.

To classify the reviews, RCClassifier is first trained using a dataset of 300

manually-labeled reviews. RCClassifier starts by performing part-of-speech tag-

ging on every review in the training set. Each tagged review is then represented

by a vector of numeric-valued features. Finally these features are used to clas-

sify the reviews. A detailed explanation of how RCClassifier works and the

description of the features is given in Chapter 4. Note that we classify reviews
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3. RICH-CONTEXT 3.3 Context Extraction

into specific and generic, whereas Bauman & Tuzhilin cluster reviews into two

groups.

3.3 Context Extraction

Having classified the reviews as specific or generic, the goal of RCMiner is then

to identify which of the information contained in the reviews is contextual and

extract it. To achieve this, RCMiner relies on topic models.

RCMiner uses the ensemble topic modeling algorithm presented in Chapter 5

to build a topic model using only the specific reviews, as seen in Figure 3.1.

After that, the topic model is applied to all of the reviews (both specific and

generic) with the purpose of identifying which topics are discussed more fre-

quently in specific reviews than in generic ones. We treat the topics discussed

more frequently in specific reviews as contextual topics and the remaining ones

as non-contextual. At the end of this process, each document is described by a

vector that contains the weights of each of the topics discussed within the docu-

ment. Since we are only concerned with the contextual topics, the remaining

topic weights are set to zero. We proceed to give a little more detail on the

operation of RCMiner.

RCMiner builds a topic model from the specific reviews only, as identified by

RCClassifier. A topic model is essentially a set of k latent factors, each repre-

sented by a weighted list of terms. The way we build the topic model is detailed

in later parts of this section. Since the topic model is built only from the specific

reviews, we expect some of these topics to be contextual. However, specific re-

views do not contain only contextual information so some of the topics may still

be quite general. In the next three steps, the more general topics are discarded.

RCMiner applies the topic model to all reviews, so that each review τ is repre-

sented by a vector of weights tτ across the k topics.

We normalise each vector tτ so that the sum of its weights equals 1.

RCMiner next determines which topics appear more frequently in specific re-

views than in generic reviews, on the assumption that these are more likely to

be the contextual topics. For each topic, t ∈ T , we calculate the sum of the

weights for that topic in the specific reviews, divided by the number of specific
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reviews:

ϕs(t) =
∑
τ∈specific tτ,t

|τ : τ ∈ specific|
(3.1)

We make a similar calculation for generic reviews:

ϕg(t) =
∑
τ∈generic tτ,t

|τ : τ ∈ generic|
(3.2)

Finally, the likely contextual topics, CT , are those where the ratio of the two

proportions exceeds a threshold β:

CT =
{
t | ϕ

s(t)
ϕg(t) > β

}
(3.3)

What is left to describe is the topic modeling itself. We build our topic models

from just the nouns in the specific reviews, as these are the parts of speech that

most capture contextual information.

At the end of this process, every review in the training set (irrespective of

whether it is specific or generic) has been associated with a vector of length

|CT |, c1 . . . , c|CT |, whose values designate the affinity of the review to each of

the |CT | contextual topics. The original dataset of records 〈〈u, i, τu,i〉, ru,i〉 is

transformed to one in which reviews are represented by their corresponding

contextual topic vectors, 〈〈u, i, c1, . . . , c|CT |〉, ru,i〉.

3.4 Recommending

3.4.1 Recommendations with side-information

To produce recommendations using the newly-extracted contextual information

we needed a recommendation algorithm that can support side-information. Shi

et al. describes many of the recommendation algorithms that can handle side

information (2014). They categorize these algorithms into two types: ones that

can support extra information about the users and items, such as demographics

or genres respectively; and ones that can support information about the interac-

tion between users and items. We are more interested in the latter since context
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has an effect on the user-item interaction.

After exploring several candidate algorithms, in particular the neighborhood-

based approaches DCW (Zheng et al. 2013) and CSLIM (Zheng, Mobasher

& Burke 2014), and the factorization-based approaches Tensor Factorization

(Karatzoglou et al. 2010), CAMF (Baltrunas et al. 2011), we decided to use

Factorization Machines (Rendle 2010, 2012), which we describe in the next

paragraphs.

A Factorization Machine is a latent-factor model in which the interaction be-

tween each pair of variables is represented by a factorized parameterization. It

takes real-valued feature vectors as inputs and finds factorized interactions be-

tween variables, which enables it to make accurate predictions in environments

with high sparsity (Rendle 2012).

In Factorization Machines the data for the prediction problem is assumed to

be in the form of a matrix X ∈ IRn×l where xi is a real-valued vector with p

variables describing the i-th case and where yi is the prediction target for the

i-th case. They are able to model all nested interactions up to order d between

the p input variables in x (Rendle 2012). Factorization Machines of order two

are defined as:

ŷ(x) := ϕ0 +
p∑
j=1

ϕjxj +
p∑
j=1

p∑
j′=j+1

xjxj′

k∑
f=1

ψj,fψj′,f (3.4)

where l is the number of latent factors and the model parameters

{ϕ0, ϕ1, . . . , ψ1,1, ψp,l} are:

ϕ0 ∈ IR, ϕ ∈ IRp, Ψ ∈ IRp×k (3.5)

Similarly to a linear regression model, the first part of Equation 3.4 models the

unary interactions between each of the variables of xj and the target variable.

The number of parameters of a Factorization Machine is linear to the number

of predictor variables and to the number of latent factors. For our contextual

recommender this means that the number of parameters is going to be linear

to the number of users, items and contextual situations. The total number of

parameters in our problem is 1 + |U |+ |I|+ |CT |+ l(|U |+ |I|+ |CT |).

Unlike a polynomial linear regression, where the interactions are modeled by
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independent parameters ϕj,j′, Factorization Machines model these interactions

with a factorized parametrization ϕj,j′ ≈ 〈ψj, ψj′〉 = ∑k
f=1 ψj,fψj′,f . This as-

sumes that the pairwise interactions have a low rank, which is ideal for sparse

datasets such as contextual datasets.

Three things led us to choose Factorization Machines over other prediction mod-

els. First, it has support for any form of side-information, including any num-

ber of contextual dimensions. Second, it is able to learn factorized parameters,

which is ideal for sparse datasets. Third, the number of parameters is linear

with the number of users, items and contextual situations. None of the other

reviewed models offered those three features simultaneously.

In the next section we describe how we use Factorization Machines to produce

recommendations.

3.4.2 RCRecommender

The contextual topic vector can be viewed as a form of side information for a

recommender system. There are many ways to incorporate side information

into a recommender system (Shi et al. 2014). As explained in the previous

section, we opted to use Factorization Machines (Rendle 2012). For this, we

one-hot encode the user and item ids, as is done in (Rendle 2012), giving train-

ing examples 〈x, ru,i〉 where x ∈ R|U |+|I|+|CT |. We use Factorization Machines of

order 2, which attempt to model the interactions between each variable xj ∈ x
and the dependent variable ru,i but also the interactions between pairs of vari-

ables xjxj′ and the dependent variable ru,i. However, the interactions between

pairs of variables is not modeled by one parameter per pair but by a low rank

approximation, which makes Factorization Machines work well with the kind

of sparse data we have in these domains.

As mentioned earlier, at recommendation time, after the Factorization Machine

has been trained, we assume we have an active user u and a contextual query

q, the latter being a short phrase that expresses the context in which the user

intends to consume the recommended item. We apply the topic model to q, so

that it too will be represented by a vector of contextual topics, c1, . . . , c|CT |. For

each candidate item i, we use the Factorization Machine to predict u’s rating

and we recommend the n items with highest predicted ratings. A summary of

the recommendation process can be seen in Figure 3.2.
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Figure 3.2: The RCRecommender component

We evaluate Rich-Context in Chapter 6 both in terms of rating prediction and

ranking prediction performance. We rely on the RiVaL framework (Said & Bel-

logín 2014) to perform the evaluation. But, before that, in Chapters 4 and 5,

we give more details about two of Rich-Context’s more complex components:

the review classification and the content extraction using topic modeling, re-

spectively.
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Chapter 4

Classification of User Reviews

As we have stated in Chapter 3, one of the goals of our work is to extract the

contextual information in an unsupervised way from user-generated reviews.

We want to remove human intervention in the task of deciding which is the

contextual information. We do not want, e.g., to generate a dictionary of key-

words as in (Chen & Chen 2015) or depend on a dataset that has fixed pre-

defined contextual dimensions as done in (Baltrunas et al. 2011, Hariri et al.

2011, Karatzoglou et al. 2010, Zheng et al. 2012a, 2013, Zheng, Mobasher &

Burke 2014).

Besides the benefit of automating the context definition process by removing

human intervention, this is going to bring other contextual variables that were

not considered before, or that were latent in the original dataset of reviews.

These contextual variables could indicate things such as: is this place good for

birthday celebrations, for conferences, for breakfast, take-away versus eat in,

etc.

When users go to websites to write reviews about items, normally they are

rating the experience they have had with the item, and writing a justification

of why they gave that numeric score. The reviews that users write can be

categorized into two types, specific and generic. Specific reviews are the ones

that tell stories about a particular experience with an item and generic reviews

are the ones that give a general description of an item. An example of a specific

review is: “During the summer, we like to take a mini staycation. This year it was
extra special as we also got engaged. Our stay at the Biltmore was just fantastic.
The service was exceptional, and the food was amazing”. In contrast, in generic

reviews it is very hard to relate the review to a particular situation; for instance:
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“Nice hotel, all the amenities you need, great complex of pools”.

In real life, there is no such thing as a context-less experience. Every experience

we undergo happens under a certain context. For instance, when we go to a

hotel, we go during spring, summer, fall or winter; we go by ourselves, with our

significant other, friends or colleagues; we go because of work or for holidays;

our stay was planned in advance or we were about to fall asleep when driving

and stopped at a motel, etc. There is always a context associated to each experi-

ence. Based on this premise, we assume that reviews that describe experiences

(specific reviews) have more contextual information than reviews that do not

describe experiences (generic reviews).

Our goal in this chapter is then to successfully separate specific reviews from

generic ones. Once they have been separated it will be easier to mine the

contextual information. To do this we will label a set of reviews as specific or

generic and then train a classifier using this labeled dataset to help us identify

the types of reviews.

4.1 Manual Labeling

The first part of this classification process deals with creating a dataset that

serves as the ground truth to identify specific and generic reviews. To carry

on with this process, we asked three volunteers to manually label 302 reviews

for two datasets. We used the hotels and restaurants datasets from the ACM

Conference on Recommender Systems Challenge 20131 and randomly sampled

302 reviews from each. They were given the following instructions:

Reviews labeling

You will be presented with a series of documents which you will have

to classify in one of either 4 categories: specific, generic, unknown or

empty.

Specific documents are the ones that describe experiences. If the docu-

ment is telling a story about a particular situation in the past, then it

1https://www.kaggle.com/c/yelp-recsys-2013
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is specific. Generic reviews give a general overview of a restaurant or

hotel, but one wouldn’t be able to tell in which particular situation the

user visited the hotel or restaurant. Unknown is only assigned when

you can’t really tell if the document is specific or generic. Beware that if

the document is mixed (contains both specific and generic parts), then

the category corresponding to the biggest part in the document should

be assigned. The empty category is used for cases when documents

contain no information.

In general, the unknown and empty categories should be avoided. Try

to use them as little as possible. If you are unsure about the category of

a document, use the one that fits the best.

Examples

Specific review During the summer, we like to take a mini staycation.
This year it was extra special as we also got engaged. Our stay at the
Biltmore was just fantastic. The service exceptional, the food amazing- it
was great at the pool, Wrights and also at Frank and Alberts. The only
reason I am not giving it a full 5 stars is the ‘upgraded’ room was just a
nice basic room. Though it was certainly nice, it wasn’t what I expected
for being the Biltmore. However, everything else certainly lived up to that
expectation.

Generic review Nice hotel, all the amenities you need, great complex of
pools. Just make sure your room is as far from the Vista Lounge as pos-
sible; otherwise you’ll be bombarded with crappy live music, fully audible
from the lounge to all the surrounding rooms above it, for four hours a
day. Horrible.

When the volunteers were completed with the labeling, we assigned each re-

view the label that the majority of the volunteers had chosen for that review.

There were a few rare cases in which every volunteer assigned a different la-

bel to a review, for instance one assigned ‘specific’, another one ‘generic’ and

the last one ‘unknown’. Reviews that did not have a majority label were dis-

carded. In the end, seven reviews were discarded in the restaurants dataset

and two reviews were discarded in the hotels dataset. In Table 4.1 a summary
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of the labeled reviews is presented. The percentage of agreement between the

three volunteer was 68% and we measure the inter-rater agreement using Fleiss’

kappa (Fleiss 1971). Fleiss’ kappa is a statistic designed to measure agreement

in the case where there are more than two raters, whereas the better-known

Cohen’s kappa is only for two raters. The kappa coefficient for the agreement

between the three volunteers was 0.37.

Table 4.1: The manually labeled datasets

Dataset
Agreement

Specific Generic
Unanimous Partial None

Hotels 157(52.0%) 143(47.3%) 2(0.7%) 126(42%) 174(58%)
Restaurants 150(49.7%) 145(48.0%) 7(2.3%) 186(63%) 109(37%)

4.2 Features

In order to be able to classify reviews as either specific or generic, we extracted

some features from the reviews that would help the classifier differentiate be-

tween a specific and a generic review. These were partly based on the work of

(Bauman & Tuzhilin 2014). After trying out several features, the following ones

helped the classifier achieve the highest classification accuracy:

• LogWords: log of number of words in the sentence + 1

• Vsum: log of number of verbs in the sentence + 1

• VBDSum: log of number of verbs in the past tense in the sentence + 1

• ProRatio: ratio of log of number of personal pronouns + 1 to LogWords

Once we extracted the features, we rescaled them using min-max scaling.

Just to give the reader a graphical representation of the usefulness of these fea-

tures in discriminating between specific and generic reviews, we have decided

to plot the two most relevant features in term of classification that we used in

one of our datasets. In Figure 4.1 specific reviews are marked with red crosses

and generic reviews are marked with blue circles. On the horizontal axis, we

have LogWords; and on the vertical axis we have VDBSum. After using this data

to train a logistic regression classifier, the classifier separates the reviews using

the green line. Reviews below the line are classified as generic and reviews

above the line are classified as specific.
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We can see clearly how the longer a review is, the higher the chances that the

review is specific. This makes perfect sense as people tend to use more words

to describe their experiences than when they are giving a general description.

Usually, people who describe experiences give more details, which makes the

reviews longer. We can also see that the more there are verbs in the past tense,

the higher the chances that the review is specific. Again this makes a lot of sense

since people tend to use a lot of verbs in the past tense when they are describing

their experiences. It is very common to find sentences like “we ordered the

pizza, but it was not so good” or “we booked the sea-side suite and the view

was fantastic, we had an amazing time”. On the other hand, when general

descriptions are given, then we less often find verbs in the past tense, e.g. “The

bar is rather noisy”.
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Figure 4.1: Reviews classification

4.3 Classifiers

For the classification of the reviews, we tried several types of classifiers, includ-

ing a dummy baseline that always predicts the most frequent value. In Table
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4.2 we provide a brief description of each of them.

Table 4.2: The classification algorithms that we compared

Classifier Description

Most Frequent This always predicts the most frequent class.
Logistic Regression This is a linear regression model where the

dependent variable is categorical.
SVC This is a support vector machine based classifier.
k-Nearest Neigh-
bours

This is a classifier that calculates the similarities
between neighbours and takes the class of the
majority of the k-nearest neighbors.

Decision Tree This is a classifier that works by generating
decision rules based on the values of the features
to predict the class of the target variable.

Random Forest This is an ensemble learning classifier that
constructs multiple decision trees and returns
the class that the majority of the decision trees
predicts.

4.4 Dataset Balancing

In a dataset the classes might not be evenly distributed. It is possible to intro-

duce bias into a classifier if one of the classes outnumbers the other ones by

a large proportion. A typical scenario that exemplifies this kind of situation is

when a classifier is trained to predict a rare disease based on some features.

If the disease only happens in 0.5% of the cases, a classifier that just predicts

every single time that a patient does not have the disease will have a 99.5%
accuracy, but it will be useless to predict the disease. In this kind of scenario,

data balancing techniques can be useful. They distribute the training data more

evenly with the goal of boosting classier accuracy. They also help to reduce the

class overlapping problem by removing noisy data points from the data, in this

way creating more well-defined clusters (Batista et al. 2004). Data balancing

is commonly used in the medical field to predict a disease and in banking to

improve fraud detection (Chawla et al. 2002).

Basically, there are three ways to balance a dataset: under-sampling the majority

class, over-sampling the minority class, or having a combination of the two.

We will describe the approaches that we have tested in order to improve the

classification of reviews.
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4.4.1 Under-sampling techniques

Random under-sampler This is the most basic under-sampling technique. It

randomly removes data samples from the majority class until a desired data

balance is achieved. The drawback of this method is that it can discard poten-

tially useful samples that describe the majority class really well while leaving

outliers or noisy samples.

Tomek Links (Tomek 1976) This takes two samples ei and ej that belong

to different classes, then the distance d(ei, ej) between them is measured. If

d(ei, el) > d(ei, ej)∀l 6= i, j or d(ej, el) > d(ei, ej)∀l 6= i, j then it is said that ei
and ej form a Tomek link. If two samples form a Tomek link, then either one of

them is noise or they are both borderline because it is unusual for two samples

to be so close and belong to different classes. If Tomek links are used as an

under-sampling technique, then only the samples that belong to the majority

class are removed, i.e., if ei belongs to the majority class then it is removed,

otherwise ej is removed. If used as a cleaning technique then samples from all

of the classes are removed, i.e., both ei and ej are removed.

Edited Nearest Neighbors (ENN) (Wilson & Martinez 2000) This removes

any sample that contradicts the classification of at least two of its three nearest

neighbors.

Neighborhood Cleaning Rule (NCL) (Laurikkala 2001) This takes a sample

ei and retrieves its three nearest neighbors. If ei is in the majority class and at

least two of its neighbors are in the minority class, then ei is removed. If ei is

in the minority class and at least two of its neighbors are in the majority class,

then neighbors that belong to the majority class are removed.

4.4.2 Over-sampling techniques

Random over-sampler This is the most basic over-sampling technique. It

creates new samples of the minority class by sampling with replacement. In

other words, it creates copies of the existing minority class samples at random.

This has the disadvantage that it can lead to overfitting (Batista et al. 2004).
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Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al.

2002) This over-samples the minority class by creating new synthetic samples

rather than by over-sampling with replacement. The samples are created by se-

lecting random points in the the space between a minority class and its nearest

neighbour. The goal of SMOTE is to increase the number of minority samples

in order to make the minority class more general.

4.4.3 Combined techniques

SMOTE + Tomek Links (Batista et al. 2004) This uses SMOTE to over-

sample the minority class, then, Tomek links are used to clean the over-sampled

dataset, removing noise and borderline points from both types of classes.

SMOTE + ENN (Batista et al. 2004) This is very similar to SMOTE + Tomek

links. It first applies over-sampling to the data using SMOTE and then ENN is

used to perform data cleaning, removing samples from the majority and minor-

ity classes.

4.5 Summary

In this chapter we have seen how, based on a manually labeled dataset, we can

build classifiers that are able to predict whether a review describes an experi-

ence or not, i.e. if it is specific or generic. We presented a methodology that

will guide users to label reviews as specific or generic. Using a POS tagger, we

were able to extract relevant features to help us differentiate between a specific

and a generic review. In Chapter 6 we will test the classifiers that we have

mentioned to identify the most accurate for our datasets. Furthermore, we will

use data balancing techniques to further improve the performance of the clas-

sifier in terms of accuracy. Finally, the best classifier configuration in terms of

accuracy for our datasets will be presented.
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Chapter 5

Topic Modeling

With the increasing amount of digital documents, several challenges have

arisen. Initially, the main concern was how to index the documents so that

they could be found later by using queries, but recently more challenging oper-

ations are needed, such as automatic summarization or unsupervised retrieval

of documents. Topic models have surged as an alternative approach to tradi-

tional methods of the information retrieval field.

Topic modeling is a technique that aims to find a latent semantic structure be-

tween terms based on their co-occurrence within documents without relying on

any form of labeled data. The terms are grouped together into topics that typi-

cally represent a concept or a theme. In topic modeling, each topic is modeled

as a mixture of terms and each document is modeled as a mixture of topics.

Topic modeling can be used for several purposes, such as indexing and retrieval

of documents (Deerwester et al. 1990, Hofmann 1999b), semantic analysis (Lee

& Seung 1999, Pauca et al. 2004, Hofmann 1999a, Blei et al. 2003), classifica-

tion of documents, clustering of documents (Xu et al. 2003, Pauca et al. 2004),

among others.

Generally, the data used by topic modeling algorithms has two characteristics.

First, each document is represented using a bag-of-words approach in which

the order of the words within the documents is lost, and second, there is no

chronological order kept for the documents themselves.

In this chapter we will start with a brief description of the precursors of topic

modeling, so that the reader has an idea of how topic models came to exist. In

the subsequent sections we will review the two main types of topic modeling
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approaches: probabilistic topic models and factorization-based methods. Then,

we will describe the current problems existing in topic modeling, describe the

approach we have used to overcome some of the problems and present some

of the evaluation techniques used to measure the quality of the topic models.

Finally, we will summarize the chapter.

5.1 Precursors of Topic Modeling

One field that has researched the analysis of documents with the goal of or-

ganizing and structuring the documents is information retrieval. Information

retrieval is concerned with improving the search for documents based on their

content.

5.1.1 Term Frequency - Inverse Document Frequency

One of the most important techniques in the information retrieval field is Term

Frequency - Inverse Document Frequency (TF-IDF) (Salton & Buckley 1988).

The goal of TF-IDF is to index documents based on their content, but also tak-

ing into account the content of the other documents in the collection. In TF-IDF,

each term has a weight that indicates its importance within a document. The

basic idea behind this, is that the weight of a term increases proportionally to

the number of times that the term appears in the document, but it decreases

proportionally to the number of times that the term appears in other docu-

ments. Terms that are unique within a document will have a higher weight than

terms that appear commonly in other documents.

The calculation of the TF-IDF score for a term is composed by two scores: the

term frequency score and the inverse document frequency score. Given a term w,

a document d and a collection of documents D, the term frequency score can

be calculated as follows:

tf(w, d) = fw,d∑
w′∈d fw′,d

, (5.1)

where fw,d is the number of times that the term w appears in the document d.
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To calculate the inverse document frequency score the following is used:

idf(w,D) = log

(
|D|

{d ∈ D : w ∈ d}

)
, (5.2)

then, the TF-IDF score is calculated as:

tf-idf(w, d,D) = tf(w, d) · idf(w,D) (5.3)

A high TF-IDF score is reached when a term has a high frequency in a given

document and appears rarely in the whole collection of documents.

Several variants of the above weighting scheme can be found in the literature

where the term frequency score is changed to a binary representation that states

whether the term appears in the document, for example. Other variants are also

available for the inverse document frequency score, where several weighting

schemes can be applied, that include various types of normalization (Pincombe

2004, Lee et al. 2005).

Using TF-IDF, it is possible to represent a document as a vector of term weights

that indicate the importance of each term for that document. This vector can

then be used as an index to find other similar documents. For instance, we can

use cosine similarity to calculate how similar two documents are based on their

TF-IDF vectors.

In the same way that we can represent a document using a TF-IDF vector, we

can also represent a collection of documents using a TF-IDF matrix, in which

the rows are the documents and the columns are the terms. Each cell (w, d) will

then contain the TF-IDF weight of term w within document d. We will call this

matrix the document-term matrix.

TF-IDF representation has several advantages. It uses a fixed-length represen-

tation of the documents since each document is represented as a vector with

length equal to the number of terms in the documents collection. The fact that

it can be used to compare the similarity between two documents in an unsuper-

vised fashion makes it ideal for automatic text retrieval.

Nevertheless, there are several drawbacks of information retrieval using TF-IDF,

such as that it fails to capture the inter- and intra-document relations between

terms, it fails to retrieve documents if synonyms are used, and it can also re-

trieve the wrong documents given the polysemous nature of some words, i.e.,
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words with multiple meanings.

5.1.2 Latent Semantic Analysis

In (Deerwester et al. 1990) a new method for document indexing is proposed.

This method, called Latent Semantic Analysis (LSA), exploits the semantic

structure present in documents in order to have a more compact representation

of documents that also leads to better matching between pairs of documents

and queries and documents.

Deerwester et al. uses Singular Value Decomposition (SVD) as a dimensionality

reduction technique to approximate the document-term matrix by using a small

number of orthogonal factors or derived dimensions. These factors may be seen

as artificial concepts. Each term and document is then represented by a vector

of weights indicating its strength of association with each of the latent concepts.

LSA decomposes the document-term matrix A into the product of three other

matrices:

A = H0 ×Σ0 ×W>
0 , (5.4)

where H0 and W0 have orthonormal columns and Σ0 is a diagonal matrix.

If the singular values in Σ0 are ordered by size, the first k may be kept and

the remaining ones set to zero. After multiplying the resulting matrices, an

approximation matrix Â can be obtained which is approximately equal to A,

but of rank k. Σ0 can be simplified by removing the zero rows and columns

to obtain a new diagonal matrix Σ. The corresponding columns of H0 and W0

can also be deleted to obtain H and W, respectively. This results in a reduced

model:

A ≈ Â = HΣW> (5.5)

The advantages of this model include that all documents have a very compact

representation, i.e. by vectors of size k. Deerwester et al. also explain that the

reduction of the dimensional space helps to reduce noise and thus leads to a

better generalization of the data. The model also deals well with synonyms. On
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the other hand, the model fails to capture the polysemous nature of the words

and there is no interpretability of the matrices.

5.2 Probabilistic Topic Models

5.2.1 Probabilistic Latent Semantic Analysis

Based on the LSA work in (Deerwester et al. 1990), Hofmann proposed

the Probabilistic Latent Semantic Analysis (pLSA) model (Hofmann 1999b,a,

2001). pLSA takes a probabilistic approach to model the interaction between

words and documents. pLSA links documents and terms through a latent vari-

able z that represents the k topics. Hofmann proposes a generative model

where he introduces a latent unobserved variable zt ∈ z1, . . . , zk to model the

interaction between the observed variables, that is, the interaction between the

documents and the terms. Here, each of the unobserved variables zt can be

interpreted as the topics. Documents are modeled as convex mixtures of topics,

and topics are probability distributions over terms.

p(wj|zt) denotes the probability that the word wj belongs to the topic zt and

p(zt|di) denotes the probability that the topic zt is present in the document di.

One of the key facts of this model is that Hofmann defines di and wj to be

conditionally independent given zt. In that way, he is linking the observed

variables (documents and terms) through an unobserved or latent variable (the

topics).

Based on the above, Hofmann defines the following generative model for docu-

ment/term co-occurrences:

Algorithm 2 Probabilistic Latent Semantic Analysis
Input: collection of documents D, number of topics k.
Output: topic assignments z.

1: for d ∈ D do
2: Choose a topic zt from p(zt|di)
3: Choose a word wj from p(wj|zt)

The result of this generative model is that one obtains a (di, wj) while the un-

observed topic variable zt is discarded.
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pLSA has a compact representation, can deal with synonyms and polysemous

words and is highly interpretable, as documents can be seen as convex mix-

tures of topics and topics can be seen as probability distributions over terms

(Hofmann 2001).

Nevertheless, there are several disadvantages for the pLSA model. There is no

natural way to assign probability to a previously unseen document, which is

very inconvenient for query-based search engines. No assumptions are made

about the probability distribution of the documents, which leads to having a

model where the number of parameters grows linearly with the number of doc-

uments and can also lead to overfitting the data (Blei 2012, Steyvers & Griffiths

2007).

5.2.2 Latent Dirichlet Allocation

LDA, proposed by (Blei 2012), extends the pLSA model by making an assump-

tion about the probability distributions of the documents.

To simplify notation, let θ(di) = p(z|di) refer to the multinomial distribution over

topics for document di and φ(t) = p(w|zt) refer to the multinomial distribution

over terms for topic zt. The parameters θ and φ indicate which topics are impor-

tant for a particular document and which terms are important for which topics,

respectively.

LDA places a Dirichlet prior on θ, which simplifies the problem of statistical

inference. Also, it is a very convenient choice for a prior since the Dirichlet

distribution is a conjugate to the multinomial.

The generative model proposed in (Blei et al. 2003) is as follows:

Algorithm 3 Latent Dirichlet Allocation
Input: collection of documents D, number of topics k.
Output: topic assignments z.

1: for d ∈ D do
2: Choose |d| ∼ Poisson(ξ) . |d| is the length of the document
3: Choose θ ∼ Dirichlet(α)
4: for j ← 1, |d| do
5: Choose a topic zt ∼ Multinomial(θ)
6: Choose a word wj from p(wj|zt, γ) . a multinomial probability

conditioned on the topic zt
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Having a prior distribution on θ means that the model generalizes more easily

to new documents. LDA has also the advantage that the number of parameters

does not grow linearly with the size of the training corpus (Blei et al. 2003); it

just depends on the number of terms and the number of topics. Additionally, it

deals well with both synonyms and polysemous words.

To approximate the probability distributions, inference algorithms, such as Ex-

pected Maximization or Gibbs Sampling, are used (Blei et al. 2003, Griffiths &

Steyvers 2004).

5.3 Factorization-Based Methods

The goal of factorization-based methods for topic modeling is to approximate

the document-term matrix Am×n by decomposing it into two smaller matrices

Wm×k and Hk×n with k � min(m,n). An approximation to the A matrix is

found by multiplying W and H, A ≈ Â = W×H. Factorization-based methods

assume that A is of low rank and thus the multiplication of W and H will give

a close approximation of A.

Based on LSA, Lee & Seung also proposed to factorize the document-term ma-

trix, but this time using Non-negative Matrix Factorization (NMF) to do so (Lee

& Seung 1999). NMF is a matrix factorization approach that reduces the di-

mensionality of a non-negative matrix, such as the document-term matrix. The

goal of NMF is to approximate a matrix A as the product of two non-negative

k-dimensional matrices W and H (Belford et al. 2018). These k-dimensions

can be interpreted as k topics (Belford et al. 2016). H represents the topic-term

matrix, in which each of the k topics is a vector that contains the weight of

each word within the topic. W represents the document-topic matrix, in which

each of the m documents is a vector that contains the strength of each topic

within the document. In other words, each cell of the document-type vector is

telling us how much of that topic is being discussed in the document. This in-

terpretation of latent factors as topics can not be made if a matrix factorization

algorithm that allows negative values is used, because it does not make much

sense to say that a topic is being discussed with a negative value in a document

or that a term has a negative value within a topic. Other approaches that have

used NMF to produce topic models include (Pauca et al. 2004, Arora et al. 2012,

Xu et al. 2003, Belford et al. 2016, 2018).
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To generate the H and W matrices, optimization algorithms, such as Alternat-

ing Least Squares and Gradient Descent, are used (Pauca et al. 2004, Belford

et al. 2018).

The advantages of using NMF to create topic models is that they deal well with

synonyms and polysemous words, have a very compact representation and can

use the wide range of available NMF methods. More importantly, the model

has interpretability, as the rows of the H matrix can be interpreted as vectors

that contain the weights of each term in a topic, and the rows of the W can be

interpreted as vectors that contain the weights of each topic in a document.

There are a few advantages that NMF have over the LDA method. First, there

is the fact that LDA can only operate on document-term matrices that have raw

frequency counts (Greene et al. 2014, Belford et al. 2018), whereas NMF can

work with document-term matrices that have been preprocessed using differ-

ent weighting functions, such as TF-IDF, log-entropy, binary, etc., or that have

been subject to document length normalization (Greene et al. 2014). Second,

there are fewer parameter choices for NMF than for LDA. Finally, as reported

by (O’Callaghan et al. 2015), LDA has a tendency to produce more generic and

less semantically-coherent topics than NMF.

5.4 Current Problems with Topic Models

In the previous sections we have described some of the most traditional algo-

rithms used to produce topic models and for each of them we have presented

advantages and disadvantages.

One thing to note is that topic modeling is in a way very similar to clustering:

they are both unsupervised strategies that attempt to find a hidden structure in

the data and in many cases they are stochastic methods that use optimization

or inference techniques that converge on a solution. Many problems faced in

clustering, such as cluster instability, deciding on the number of clusters (for

algorithms like k-means) and cluster initialization are also common in topic

modeling. In this section we will focus on the problems of instability of the

topic models and how to decide on the number of topics. These problems are

common to all of the topic modeling algorithms we have presented.
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5.4.1 Instability

Given the stochastic nature of topic modeling, it is common that topic models

produced using the same data, the same algorithm but with a different random

seed are different. This is called the instability problem. Instability happens be-

cause the algorithms converge to different local minimums in the optimization

or inference process (Belford et al. 2018). This is revealed in two ways: the

topics are composed of different terms or the order of the terms has changed,

and the documents have different assignments to topics. This problem has

also been studied in clustering, where some clustering algorithms are initialized

with random values and then different clusters can be produced when running

the algorithm on the same data with different random seeds.

Instability is a big problem for many reasons. The topic models generated can

become unpredictable; the experiments can not be reproduced; if used for docu-

ment retrieval, different documents will be retrieved for the same query if the

random seed is changed; and so on. It is common in many applications to as-

sume that the generated topic models are definitive, even when different runs

of the same algorithm can result in different topic models (Belford et al. 2018).

In our particular case, since we are going to use topic models to extract contex-

tual information out of the reviews, we need topic models that we can rely on so

that we can produce good recommendations. The quality of our recommender

can not rely on a “lucky” random seed.

In Section 5.5 we will describe the approach we have used to overcome the

instability problem and in Section 5.6 we describe a set of metrics to measure

the stability of a topic model.

5.4.2 Deciding on the number of topics

Another common problem that researchers face when building topic models

is deciding on the number of topics. When the number of topics is too low,

the generated topics become too general. If the number of topics is too large,

repeated topics begin to appear; this is known as the “over-clustering problem”.

The accuracy of a topic model is sensitive to the number of topics. It then

becomes necessary to define metrics that help us decide what is the best number

of topics.
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Greene et al. proposes to use stability metrics to decide on the number of topics.

The idea behind this proposal is that a topic model with high stability is more

robust to perturbations in the data (2014). Greene et al. uses stability metrics

to predict the number of topics. They showed their predictions correlated well

for several corpora where the number of categories was known beforehand.

Based on those results we will also use the stability metrics to help us choose

the ideal number of topics.

Arun et al. also propose a metric to find the ideal number of topics (2010).

Arun et al. note that when the topics are orthogonal to each other, i.e., well-

separated, the singular values that come from the Singular Value Decomposition

of the topic-term matrix are equal to the row L2 norms of the topic-term matrix,

which can be interpreted as the proportion of topics assigned to the corpus.

They also note that as the number of topics increases, the topics start to become

more and more orthogonal. If a value for the number of topics k is reached

where the topics are well-separated, they will continue to be well-separated for

every k′ > k. The goal in (Arun et al. 2010) then becomes to find the smallest

value of k where the topics are well-separated (or orthogonal).

5.5 Topic Ensembling

Given that instability is a big problem, we decided to use the topic ensembling

approach presented in (Belford et al. 2016, 2018). Our decision to integrate

this into Rich-Context has been one of the most helpful elements towards out-

performing other recommender systems. Before using the topic ensembling

approach our results were very inconsistent.

Belford et al. borrow techniques from the clustering world and apply them to

topic modeling in order to obtain stable topic models (2018). Their idea is very

simple: generate a lot of topic models and then aggregate them together into a

final topic model in order to reduce variability. Their approach for generating

stable topic models is divided in two steps: ensemble generation and ensemble
integration, as illustrated in Figure 5.1.

In the ensemble generation step, r topic models are generated from the same

corpus using different random seeds each time but preserving the value for the

number of topics k. The topic models are generated using NMF, as described

in Section 5.3. These topic models are called the base topic models. After each

103



5. TOPIC MODELING 5.5 Topic Ensembling

Topic 
Modeling
Algorithm

Original
Corpus

Base
Models

Generation Step

Aggregation
Algorithm

Aggregation Step

Ensemble
Topic Model

Figure 5.1: Illustration of the topic ensemble approach.

run, the topic-term matrix H of the base topic model is kept for later use.

In the ensemble integration step, a new representation of the corpus is created

in the form of a topic-term matrix M. This matrix is created by stacking together

the transpose of each topic-term matrix H created in the ensemble generation

step, forming a matrix of dimensions r · |D| × |W |, where r is the number of

base topic models, |D| is the number of documents and |W | is the number of

terms. Belford et al. note that the order in which the matrices are stacked is

irrelevant to the output of the algorithm (Belford et al. 2018).

After the matrix M has been created, then NMF is used to decompose M into

two matrices using k factors. The newly obtained H′ is going to be the final

topic-term matrix that contains the weight of each term inside a topic.

Belford et al. propose a variant of the ensembling topic model described above

that is based on the popular k-fold cross-validation strategy used in machine

learning (Belford et al. 2018). In this method, instead of using the whole corpus

for creating each of the base models, the corpus is divided into f folds of equal

size. In each turn, one of the f folds is removed, leaving (f − 1) folds which

are used to generate the topic model using NMF. At the end of the process, f

topic models are obtained. To reduce variability, the process is repeated p times,

which means that at the end of the whole cycle, f ·p base topic models will have

been generated. Finally all the base topic-term matrices are stacked together

in a matrix M and NMF is applied to this stacked matrix to generate the final

topic-term matrix H′ in the same way as described before.

The results reported in (Belford et al. 2018) show that the k-fold version of

the topic ensembling approach generates the most stable topic models. In our

work, we use the k-fold version of the topic ensembling algorithm.

104



5. TOPIC MODELING 5.6 Topic Model Evaluation

5.6 Topic Model Evaluation

Determining the quality of a topic model remains an open problem in research

and there is no definite way to say that one topic model is better than another.

This is similar to clustering, in which is difficult to say if a clustering is better

than another. Having said that, we do use metrics to measure the quality of

our topic models and our ultimate goal is to predict the performance of the

recommender based on the quality of our topic model. In this section we will

present four metrics, two for topic model stability and two, designed by us, to

measure the quality of the topic models based on their content of contextual

words.

We have created a two-step methodology to help us determine which is the best

topic model for our recommendation goal. The first step in this methodology is

to decide on the topic modeling algorithm. This decision is made based on the

stability metrics described in Section 5.6.1. Our goal is to select the algorithm

that returns the most stable results so that we can be confident about our results

and we are able to reproduce them in the future. We do not want our results to

depend on a “lucky” random seed.

Once we have selected the topic modeling algorithm, we are going to decide

which types of words to use based on the part-of-speech tags. In this case we

will use the context-richness metrics described in Section 5.6.2. We want to use

the types of words that produce the most context-rich topic models to facilitate

the context extraction process from the topic models.

The number of topics is a highly relevant hyperparameter when building a topic

model and, in our case, will affect the performance of the overall recommender

system. However, despite several attempts, we could not find a metric for choos-

ing the number of topics that would correlate well with the recommendation

performance, either for ranking or rating prediction. We tried, for example,

using the divergence metric proposed by (Arun et al. 2010) without success. In

the end, the number of topics remains as a hyperparameter of Rich-Context and

we set it by grid-search. As we will show in Chapter 6, it has a great impact on

the recommendation performance.
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5.6.1 Topic model stability

The topic stability metrics will help us to choose the best topic modeling al-

gorithm. Our choice is based on stability metrics as we want to obtain results

that we can reproduce in the future. Once we have found a stable topic model

algorithm we will explore the hyperparameter space to improve the quality of

the generated topic models. The metrics presented in this section were pro-

posed in (Belford et al. 2018). One advantage of these metrics is that they are

unsupervised.

5.6.1.1 Descriptor set difference

Belford et al. argue that if two topic models are very similar, then there should

be little or no difference between the top p terms of their topics (Belford et al.

2018). Based on this, for a topic model Mi a set of terms Wi is created. Wi

contains the union of the top p terms of all of the topics in Mi. Then for two

models, the amount of different terms that they have in common is compared

by using the following formula:

DSD = (Mi,Mj) = Wi4Wj

p · k
(5.6)

where4 is the symmetric set difference, i.e., Wi4Wj = (Wi−Wj)∪ (Wj −Wi).

This equation returns a value in [0, 1] where 0 means that there are no term dif-

ferences between the two topic models and 1 means that the two topic models

share no terms.

Having this, we can produce the Average Descriptor Set Difference (ADSD)

score for r topic models {M1, . . . ,Mr} by using the following equation:

ADSD = 1
r · (r − 1)

r∑
i,ji6=j

DSD(Mi,Mj) (5.7)

5.6.1.2 Topic-term stability

To capture the variance at an individual topic level, Belford et al. propose the

topic-term stability metric that makes pairwise topic comparisons to detect how

much topics change individually (Belford et al. 2018).
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To measure how similar two topics are, Belford et al. propose to use a similarity

metric based on the Jaccard index. The topics are represented by their top p

terms.

Jaccard(Ri, Rj) = Ri ∩Rj

Ri ∪Rj

, (5.8)

where Ri contains the top p terms of the i-th topic. Based on the Jaccard metric,

a pairwise similarity matrix can be built to record the similarity value of every

i, j pair of topics. The next step is to find the matching topics for two topic

models Mi and Mj. This is done by finding a permutation π in Mj for the

topics in Mi (Belford et al. 2018). Having this, we can calculate the Term

Stability (TS) score:

TS(Mi,Mj) = 1
k

k∑
x=1

Jaccard(Rix, π(Rix)) (5.9)

where π(Rix) represents the topic in topic model Mj that corresponds to the

i-th topic in topic modelMi by the permutation π. The TS metric has a range

in [0, 1]. A score of 1 means that we have two k-way identical topic models,

where k is the number of topics.

Having this, we can produce the Average Term Stability (ATS) score for r topic

models {M1, . . . ,Mr} by using the following equation:

ATS = 1
r · (r − 1)

r∑
i,ji6=j

TS(Mi,Mj), (5.10)

where a score of 1 indicates that all pairs of topic descriptors were matched

identically across the r topic models (Belford et al. 2018).

5.6.2 Context richness

Even though we have some metrics to measure the quality of topics models in

general, in our particular problem, we are worried about context-driven rec-

ommendations, and for that we need topic models that are rich in contextual

words. If we have topic models with high quality but a poor amount or no con-

textual words at all, that topic model is not going to be useful for our context-

driven recommendations. Therefore, we also need metrics that reveal how rich
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is a topic model in terms of contextual words. In this section we will describe

the metrics we have designed to measure the amount of context richness in our

topic model.

The proposed metrics require that we manually define a vocabulary V of con-

textual words. We stress that this vocabulary is not necessary for the recom-

mendation task, nowhere is it used in the Rich-Context system. It is only used

in evaluation: to confirm that our method learns context-rich topic models.

5.6.2.1 Contextual topic score

Contextual Topic Score (CTS) helps us determine the context-richness of a topic

t and is the sum of the weights of the contextual words that are part of the

contextual vocabulary V . This metric assumes that the sum of all the entries in

the topic t add up to one.

CTS(t) =
∑
w∈V

ϕw,t ∀w ∈ V (5.11)

where ϕw,t denotes the weight that the word ϕ has in topic t and V is the

vocabulary of all contextual words.

The score of this metric is in [0, 1]. 1 means that every word in the topic was

contextual and 0 means that none of the words in the topic were contextual.

For our purposes the higher the value of the contextual topic score, the better.

5.6.2.2 Contextual topic model score

Contextual Topic Model Score (CTMS) averages the contextual topic scores of

all the topics in a topic modelM.

CTMS(M) =
∑
t∈MCTS(t)

k
, (5.12)

where k is the number of topics of topic modelM.
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5.6.3 Human evaluation of topic models

Besides the methods that we have shown to evaluate the quality of topic models,

there is another family of methods that relies on humans to evaluate the quality

of topic models. We do not incorporate human evaluation of topic models into

our work at this stage because our work currently focuses on recommendation

accuracy and not other factors. But, we feel it is important to acknowledge this

family of approaches to evaluation, because, after all, reviews are written by

humans and this type of evaluation is particularly useful if we were to extend

our work to incorporate explanations.

The first work to introduce this type of evaluation is (Chang et al. 2009), where

two metrics to evaluate the coherence of topic models are presented: word in-

trusion and topic intrusion. The word intrusion metric is used to measure the

coherence of words within a topic, and it presents users with a set of six words

in random order. This set of words consist of the five words with highest prob-

ability in a topic plus a word called the intruder word that is selected randomly

from the words with lowest probability in that topic. To ensure that the intruder

word is not ignored, e.g. in the case where it is a rare word, the intruder must

be a word with high probability in another topic. The user must then select the

intruder word. The coherence of a topic is measured by the percentage of times

that users correctly select the intruder word.

The topic intrusion metric measures how well a topic model assigns topics to

documents. It presents users with a set of four topics in random order along

with a document. This set of topics consist of the three topics with highest

probability in the document plus a topic called the intruder topic that is selected

randomly from the topics with lowest probability of the document. The user

must then select intruder topic. The quality of the topic model is measured by

the percentage of times that users correctly select the intruder topic.

Other authors to use the word intrusion and topic intrusion methodology in-

clude (Lau et al. 2014) and (Arnold et al. 2016).

(Newman et al. 2010) introduces a more simplistic approach in which only

the quality of the topics is rated using a scale from 1 to 3. The approach is

also used in (Mimno et al. 2011) and (Aletras & Stevenson 2013). We note

that the purpose of (Newman et al. 2010) is to find a metric that correlates

with the human evaluation of topic models in order to evaluate topic models

automatically.
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Finally, (Lee et al. 2017) introduces another approach in which users evaluate

three aspects of topic models: the clarity of the topic words, the consistency of

the document set, and the topic-document correlation. These three aspects are

rated by the user using a scale from 1 to 10.

In our work the evaluation of the quality of the topic models happens indirectly,

through the accuracy of the recommender. In other words, the best topic models

are the ones that lead us to better recommendations. There are two reasons

why we did not use human-based evaluations for our topic models. First, we

are more interested in producing accurate recommendations than producing

interpretable topic models. Second, the costs of having humans evaluate our

topic models is too high at the stage of hyperparameter selection. As we will see

in Chapter 6, we had to try with dozens of numbers of topics for each dataset

to improve the accuracy of Rich-Context, something that is unfeasible when

human evaluation is involved.

The presented works are highly relevant if in the future we want to extend Rich-

Context to incorporate item summaries, user profiles or explanations — all are

tasks in which interpretability and coherence are crucial.

5.7 Summary

In this chapter, we have explored the two main approaches for topic modeling

algorithms: probabilistic topic models and factorization-based approaches. We

have described in detail how they work and their drawbacks and benefits. Then,

we described a new topic modeling approach that overcomes one of the biggest

problems in topic modeling, the instability problem. We also introduced the

reader to several metrics to evaluate the quality of topic models. In Chapter

6 we run experiments across two datasets to determine the best way to build

the topic models based on the presented metrics. We will show that, despite its

popularity, LDA is not suitable because of its high instability and we have opted

for the topic ensembling approach.

In this chapter we have given an explanation of what topic modeling is, how it

works and how to choose the ideal algorithm and its hyperparameters. Based

on the topic models derived from the work of this chapter, we will extract the

contextual information that will enable us to make context-driven recommen-

dations as we will see in the next chapter.
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Chapter 6

Evaluation

In this chapter we present the results of evaluating our model. We start by

describing the datasets we used for the testing, followed by the preprocessing

steps we executed to ensure the quality of our data. The subsequent sections

of the chapter present the results of evaluating the three main components of

Rich-Context: RCClassifier, RCMiner and RCRecommender. For each of the

three components, we describe the methodology and the metrics we have used

for the evaluation and then present the results. In the last part we describe the

implementation details such as the languages, the packages and libraries that

we have used.

The goal of this chapter is to show the reader the performance of the three

main components of Rich-Context and also guide the reader through the de-

cisions we have made regarding the selection of algorithms and establishing a

methodology based on our findings. Finally, we will show how, after following

these decisions, we were able to beat the state of the art in both rating and

ranking prediction.

6.1 Datasets

As seen in Chapter 2, one of our major criticisms of the evaluation method-

ologies of much of the work that we reviewed was the use of non-real-world

datasets. These datasets were sometimes synthetically generated by the au-

thors of the papers (Karatzoglou et al. 2010, Baltrunas et al. 2011) or some-

times came from surveys (Karatzoglou et al. 2010, Baltrunas et al. 2011, Zheng
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et al. 2012a, 2013, Zheng, Mobasher & Burke 2014) or user studies (Unger

et al. 2016). Evaluating a model using a synthetic dataset gives no guarantee

that the model would work in the real-world. Datasets that come from surveys

or user studies have the risk of biasing the users and tend to be quite small

and not sparse. Some other authors introduced datasets that were not publicly

available (Karatzoglou et al. 2010, Baltrunas et al. 2011, Unger et al. 2016,

Zheng et al. 2012a, 2013, Zheng, Mobasher & Burke 2014, Diao et al. 2014,

Levi et al. 2012, Dong et al. 2016), limiting the opportunity for making com-

parisons. Other approaches were only evaluated using one dataset (Unger et al.

2016, Diao et al. 2014), which raised concerns about the ability of the model

to generalize to other datasets.

Based on the concerns explained above, to evaluate Rich-Context we looked

for datasets with the following four characteristics. First, the dataset should

contain ratings and reviews. This is required since we want to extract the con-

textual information out of the reviews and the ratings will help us evaluate the

prediction performance of our model. Second, the dataset should be sparse.

This is the natural situation in CARS, given that an item will have been rated

under only a small number of times under a given context. We want to evaluate

our model under those sparse conditions. Third, the dataset should be a real-

world dataset. We want to know how our model performs under real-world

conditions, where reviews are unstructured and explicit contextual information

is unavailable. Generally this condition goes in hand with the sparsity con-

dition. Fourth, the dataset should be publicly available. We want a dataset

that is accessible to other authors so that they can compare the performance

of their models against Rich-Context. A final point is that we want to evaluate

Rich-Context using multiple datasets, to see how well the model generalizes to

various datasets.

Taking into account the four aforementioned characteristics, we conducted our

experiments using three datasets, Yelp Hotels and Yelp Restaurants that were

part of the ACM Recommender Systems Challenge 20131, and TripAdvisor Ho-

tels that is part of the Four-city datasets2. All of the datasets contained the user

ID, the item ID, the user’s rating for the items and the user’s review for the rated

item. We can see a summary of the datasets in Table 6.1.

1https://www.kaggle.com/c/yelp-recsys-2013
2http://www.cs.cmu.edu/∼jiweil/html/four_city.html
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Table 6.1: Description of the datasets.

Dataset Reviews Users Items Sparsity

Yelp Hotels 5 034 4 148 284 0.9957
Yelp Restaurants 158 430 36 473 4 503 0.9990
TripAdvisor Hotels 878 561 576 689 3 945 0.9996

6.2 Data Preprocessing

Every time a dataset is going to be analyzed, regardless of what the purpose of

the analysis is, the data has to go through a preprocessing step. This preprocess-

ing step is especially important when working with real-world data, in which

it is very usual to see dirty or malformed records, which, if they were used in

the data analytics process, would bring us to misleading results. A well-known

phrase in the data analytics field is “garbage in, garbage out”, which reveals the

importance of cleaning and correctly transforming all the data before starting

to work with it (Adomavicius et al. 2011).

6.2.1 Cleaning

In our work, we are dealing with real-world datasets in which it is frequent to

find missing data, empty fields or fields with errors that can lead to a misrep-

resentation of the data (for instance, when a value for a rating is 50 instead

of 5.0, or when we have hundreds of empty reviews made by a test user that

developers forgot to delete from the production database). For this reason, it

was necessary for us to perform a simple but yet effective cleaning process.

6.2.1.1 Missing and erroneous IDs

In order to detect which reviews were not good, we first counted the number

of reviews per user and the number of reviews per item. The purpose of this

is to discover outliers and detect if they have a high count of reviews because

of some mistake. This led us to discover that in some datasets reviews whose

user ID was an empty field had a high frequency as well as other reviews made

by some ‘default’ user. For the Yelp Hotels and Yelp Restaurants datasets, we

found no records with missing or erroneous IDs, but the TripAdvisor Hotels

contained 77 365 records whose user ID was empty or equal to ‘CATID_’, a
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user ID with almost 300 reviews that we assumed was a default for when user

information was unavailable. Analyzing the number of reviews by the rest of

the users, ‘CATID_’ was clearly an outlier. In the end, we removed all records

with missing or erroneous IDs.

6.2.1.2 Removing duplicates

One of the assumptions that we make in this work is that there is only one

review per user-item pair, although this might not be the case in real life, where

one user can make several reviews to the same place based on different visits.

We decided to simplify our model so as not to include repeated reviews. In

the majority of real-world datasets that we have, there is only one review per

item. In the datasets where there is more than one, we decided to take the first

review in chronological order and discard the rest. For the Yelp Hotels and Yelp

Restaurants datasets there was only one review per user-item pair. However the

TripAvisor Hotels dataset did contain more than one review per user-item pair.

In total, we discarded 7 305 records from the TripAdvisor Hotels dataset.

6.2.1.3 Low frequency users and items

Another common practice in data preprocessing is to remove users and items

that have a low number of reviews. Examples of this can be seen in (Chen &

Chen 2015, Diao et al. 2014, Jakob et al. 2009, Wang et al. 2012, Wu & Ester

2015). This is done because it has been shown that models that are trained

with data that comes from users and items with a certain minimum number of

interactions work better than the ones that include users and items with a very

low number of interactions. In our work we only remove items that have fewer

than 10 reviews. Infrequent users are left because we want to see how well our

model performs for cold-start users. For the Yelp Hotels dataset, we discarded

186 items that corresponded to 911 records. For the Yelp Restaurants dataset,

we discarded 1 953 items that corresponded to 9 697 records. For the TripAvisor

Hotels we discarded 606 items that corresponded to 2 555 records.

6.2.1.4 Removing foreign reviews

Another problem with some datasets, especially the ones that have been

crawled from the web, is that it is frequent to find reviews that have been
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written in a language different from English. This of course poses a problem

because it is going to generate noise when using the foreign language reviews

to train the model. It is necessary then to first detect the language of each

review in the dataset and then keep only the reviews that have been written

in English. To identify the language of the reviews, we have used the Python
package langdetect 1.0.7. We found 16, 574 and 64910 records that were not

in English language in the Yelp Hotels, Yelp Restaurants and TripAdvisor Hotels

dataset, respectively, and we removed them.

6.2.1.5 Removing records from the classification training set

Finally, for the Yelp Hotels and Yelp Restaurants datasets, the records that were

used to train RCClassifier were removed. This was done in order not to bias

the recommender. For the Yelp Hotels dataset, 298 records were removed that

correspond to the 300 used to train the classifier minus 2 records that were pre-

viously removed because they belonged to items with fewer than 10 reviews.

Similarly, for the Yelp Restaurants dataset, 295 records were removed that corre-

spond to the 300 used to train the classifier minus 5 records that were previously

removed because they belonged to items with fewer than 10 reviews. To train

the classifier for the TripAdvisor Hotels dataset we used the same set of records

from the Yelp Hotels dataset because they were also reviews of hotels, so no

additional records were removed from the TripAdvisor Hotels dataset.

6.2.1.6 Summary

Table 6.2 presents a summary of the datasets after the cleaning process.

Table 6.2: Summary of the datasets after the cleaning process.

Dataset Reviews Users Items Sparsity Discarded
records

Yelp Hotels 3 809 3 205 98 0.9879 1 225 (24.3%)
Yelp Restaurants 147 864 35 021 2 550 0.9983 10 566 (6.7%)
TripAdvisor Hotels 726 426 526 717 3 299 0.9996 152 135 (17.3%)
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6.2.2 Transforming

Once we have the records that we are going to use, we have to transform the

data in order to make it easier to process and to give it to other components in

the model. Particularly, in this work, we performed POS tagging and lemma-

tization, and we built bag of words representations, which we will describe in

the following subsections.

6.2.2.1 Part-of-speech tagging

Part-of-speech (POS) tagging consists of labeling each word of a sentence with

its corresponding POS tag. In other words, we want to identify the nouns, pro-

nouns, verbs, adverbs, adjectives, etc. of the sentence. Due to the ambiguity of

English language (or any other natural language), this task is more complicated

than it appears. Depending on the syntactic context of a word, its meaning can

change, but also its POS tag. For instance, let’s take a look at the word light in

these three sentences: “There was no light in the room”, “Her backpack was very
light” and “The damp wood was useless to light the fire”. In the first sentence,

light is a noun, in the second one it is an adjective and in the third one it is a

verb. A good POS tagger will use the syntactic context in order to assign the

correct tag.

To label the words in a sentence, we tried several packages including the

scikit-learn and Pattern packages. After inspecting the POS tags assigned

to the reviews by each package, we decided to use Pattern as it had fewer

mistakes in the assigned tags.

6.2.2.2 Stemming and lemmatization

It is frequent when processing large text corpora to encounter words that can

be grouped together because they are syntactic variants of the same base word.

For instance, if we are interested in seeing which nouns appear more frequently

in a corpus, it would be a good idea to group the words friend and friends
together as they are variants of each other. In order to achieve that, there are

two popular techniques within natural language processing that we can use:

stemming and lemmatization.

Stemming is the task of reducing terms to a stem by taking off the affixes. For
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instance, “automate”, “automates”, “automatic” and “automation” all reduce to

“automat”. There are a few inconveniences with stemming, however. First of

all, by taking off the affixes words that have different meanings but that share

the same root may be reduced to the same stem. For instance, organization and

organs are both reduced to organ, which is not the desired behaviour. Another

minor inconvenience is that sometimes terms can be reduced to non-existing

words, for instance the word lazy is reduced to laz and the word arguing is

reduced to argu. To overcome this, we can use another natural language pro-

cessing technique called lemmatization.

Different to stemming, lemmatization attempts to reduce a word to its base

form, this being an actual dictionary word. Lemmatization relies on POS tag-

ging and morphological analysis. For instance, the word feet has foot as its

lemma, whereas stemming misses that link.

In this work we use lemmatization based on the Pattern3 Python module.

6.2.2.3 Building bags of words

Once we tagged and lemmatized every word in our text corpus, we represented

each review as a bag of words. Note that in a bag of words representation, the

order of the words in the document is lost.

For our approach, we only included nouns as contextual information is de-

scribed mostly using nouns. Adjectives, verbs and other types of words are

rarely used to describe a contextual situation. In Section 6.4.3.2 we see how

using only nouns translates into context-richer topic models.

In the next sections, we will describe how we evaluated Rich-Context and each

of its components: RCClassifier, RCMiner and RCRecommender. We will present

the evaluation methodologies along with the results.

6.3 Evaluation of RCClassifier

As described in Chapter 4, the goal of RCClassifier is to discriminate between

specific reviews and generic ones. We do this because specific reviews contain

more contextual information than generic ones and this will help RCMiner to

3https://www.clips.uantwerpen.be/pattern

117

https://www.clips.uantwerpen.be/pattern


6. EVALUATION 6.3 Evaluation of RCClassifier

extract the contextual information by building topic models using only specific

reviews.

In Chapter 4, we saw that there are many factors that can have an influence

on the classification performance, mainly being the features that we give to the

classifier, the selection of the right classification algorithm, the data balancing

technique that we select, and the value of the hyperparameters that are given to

the classification algorithm. In this section we will describe the experiments we

conducted that lead us to select a final combination of the mentioned factors

based on the classification accuracy.

6.3.1 Evaluation methodology

For our experiments, we used the nested cross-validation strategy. For the outer
fold, we split the data into five folds and left one fold as the test fold; the rest

was used for training. For the inner fold, we took the training data of the outer
fold and split it into another five folds, leaving four for training and one for

validation. Then we performed hyperparameter tuning using grid search to

find the best set of hyperparameter values that maximize the score (in this case

the accuracy) in the validation set. The data balancing techniques were also

included as part of the hyperparameters. In Table 6.3, we can see the list of

candidate hyperparameter values that we used for each type of classifier. For

each fold in the outer fold, having found the set of hyperparameter values that

performed the best, these are the ones we used to train the outer fold model

and test on the outer test fold the accuracy of the algorithm. In the end, we

did nested cross-validation for every type of classifier and kept the one with the

highest estimated accuracy.

Finally, after selecting the best classification algorithm, we need the best hy-

perparameter values for the winning algorithm. Here we also use grid search.

Again we split the dataset into five parts, using four for training and one for

testing. For each combination of hyperparameter values, we train a model us-

ing the four parts of the dataset and test it on the remaining part. We repeat this

five times and select the hyperparameter value configuration with the highest

average accuracy across the five folds. In Section 6.3.3 we report the values for

these hyperparameters.

It is very important to note that even though we have three datasets, only two

of them were manually labeled: Yelp Hotels and Yelp Restaurants. This is due

118



6. EVALUATION 6.3 Evaluation of RCClassifier

Table 6.3: The list of candidate hyperparameters used to train the classifiers

Classifier Parameter Values

Most Frequent – –
Logistic Regression Inverse of regularization 0.1, 1.0, 10, 100, 1000
SVC Kernel RBF, linear

Inverse of regularization 0.1, 1.0, 10, 100, 1000
k-Nearest Neighbors Number of neigbours 1, 2, 5, 10, 20

Weights uniform, distance
Decision Tree Maximum depth of the tree None, 2, 3, 5, 10

Min samples to split a node 2, 5, 10
Random Forest Number of estimators 10, 50, 100, 200

to the fact that the Yelp Hotels and TripAdvisor Hotels datasets are from the

same domain. This means, that when we train the classifier to classify reviews

for the TripAdvisor Hotels dataset, it is trained using the Yelp Hotels manually

labeled reviews.

6.3.2 Metrics

The metric we decided to use to measure the performance of the classifier is

accuracy, which is defined as the proportion of correct predictions over the test

set. In other words:

accuracy = tp + tn
|Etest|

, (6.1)

where tp stands for true positives, tn stands for true negatives and |Etest| is the

number of samples, i.e. the number of reviews in the test set.

6.3.3 Results

In Figure 6.1, we can see a summary of the accuracies of the classification

algorithms we have used. The best classifier for the hotels dataset was Logistic

Regression with an inverse regularization value of 10 and no dataset balancing.

This classifier had an accuracy of 75%. For the restaurants dataset, it was the k-

Nearest Neighbours classifier with 2 neighbours and uniform weights and using

SMOTE-ENN to balance the dataset. This classifier had an accuracy of 80%.
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Figure 6.1: Accuracy of reviews classification

6.4 Evaluation of RCMiner

As we saw in Chapter 3, the goal of RCMiner is to extract contextual infor-

mation out of the user-generated reviews. It does so by building topic models

using only specific reviews and discarding topics that appear more frequently

in specific reviews than in generic ones. The remaining topics are then labeled

as contextual topics.

There are many ways in which a topic model can be built. Many factors such as

the selection of the algorithm, the input data of the algorithm and the hyper-

parameter values can influence the quality of a topic model. In this section we

will describe the results obtained in our quest to find the best topic models.
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6.4.1 Evaluation methodology

The goal of evaluating RCMiner is to determine in which way we can build the

best possible topic models. This is done in two steps. First, based on stability

metrics, we determine which algorithm to use. We will choose the algorithm

with the highest stability. Second, once we have chosen our algorithm, the

next step is to determine what kind of data to be used by the topic modeling

algorithm. The goal of this step is to create context-rich topic models. We will

vary the types of words we use to create the topic models along with the types

of reviews. The details of the metrics are presented in the next section.

To evaluate the stability of a topic modeling algorithm, in our experiments,

we used the Yelp Hotels, Yelp Restaurants and TripAdvisor Hotels dataset to

compare LDA, NMF and the topic ensembling approach. We created 100 topic

models with the entire dataset, each with a different random seed and applied

the ADSD and ATS metrics. We chose the topic modeling algorithm with the

highest stability.

To evaluate the context richness of a topic model we want to determine what

type of data to be used by the topic modeling algorithm. In this case, we want

to explore which POS types are worth including in the construction of our topic

model. In particular we will compare using nouns-only (NN), verbs-only (VB),

adjectives-only (JJ) and all types of words to see how they impact the context-

richness of the topic models. We want to have very context-rich topic models

in order to extract the contextual information from them. As we saw in Section

5.6.2, context-richness measures the weights of contextual words within a topic

model. To evaluate which types of words we should use, we relied on the con-

textual topic model score metric introduced in Section 5.6.2.2. We also explored

how context-richness varies when using only specific reviews to build the topic

model versus using only generic reviews. We evaluated the context-richness us-

ing the Yelp Hotels, Yelp Restaurants and TripAdvisor Hotels datasets. We built

the topic models using the entire datasets.

6.4.2 Metrics

To evaluate the generated topics model we will use the metrics we described in

Section 5.6. Specifically we will use three metrics, which are Average Descrip-

tor Set Difference (ADSD), Average Term Stability (ATS) and Contextual Topic
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Model Score (CTMS).

ADSD measures the term differences between two topic models and uses the set

union of the top p terms of each topic in a topic model. We use the metric given

by Equation 5.7. If ADSD(Mi,Mj) = 0, it means that there is no difference

between Mi and Mj. If ADSD(Mi,Mj) = 1, it means that Mi and Mj are

completely different. For ADSD the lower (closer to 0), the better.

Differently to ADSD, ATS captures the variance at an individual topic level. ATS

makes pairwise topic comparisons to detect how much topics differ. We use the

metric given by Equation 5.10. If ATS(Mi,Mj) = 0, it means the topics from

Mi are completely different from the topics from Mj. If ATS(Mi,Mj) = 1,

it means that all of the topics are the same. For ATS, the higher (closer to 1),

the better, as it means that the topic models produced by the topic modeling

algorithm are more contextual.

CTMS measures the ratio (given by the term weights) of contextual terms

within a topic model. We use the metric given by Equation 5.12. If

CTMS(M) = 1, it means that the sum of the contextual term weights for all

the topics inM is 1; in other words, it means that all of the terms that have a

weight greater to 0 are contextual. If CTMS(M) = 0, it means that none of the

contextual terms have weights greater than 0. For CTMS the higher (closer to

1), the better, as it means that the topic models produced by the topic modeling

algorithm have more contextual information.

6.4.3 Results

In this section, we will present the results regarding topic model stability and

context-richness.

6.4.3.1 Stability

As stated previously, we used the stability metrics to decide on the topic mod-

eling algorithm.

Figures 6.2a, 6.2b and 6.2c contain the ADSD results on the Yelp Hotels and

Yelp Restaurants dataset respectively. Lower values of ADSD indicate higher

topic model stability. We can clearly see how poor the ADSD results are for LDA
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across both datasets. NMF is better, but it is clear that the topic ensembling

approach has the best ADSD results across both datasets.
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(b) ADSD on the Yelp
Restaurant dataset
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Figure 6.2: Topic model term difference

We can see a similar behavior when we measure the stability using ATS, as

shown in Figures 6.3a, 6.3b and 6.3c for the Yelp Hotels, Yelp Restaurants and

TripAdvisor Hotels dataset respectively. The topic ensembling approach clearly

produces the most stable topic models, with NMF the second best method by

this measure. LDA suffers a lot from the instability problem.

It is clear that if we want to be able to reproduce our results in the future, LDA is

not a very good choice, NMF performs much better, but in the end it is the topic

ensembling approach that has the highest stability. For this reason, we chose the

topic ensembling algorithm to create the topic models that our recommender

system will use to extract contextual information. In particular, we chose the

k-fold version of the topic ensembling approach described in (Belford et al.

2018).
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(b) ATS on the Yelp Restau-
rant dataset
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Figure 6.3: Topic model pairwise stability

As a side note, it is alarming to see how unstable are the topic models produced
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by LDA. In our implementation, we used the gensim package for Python4, and

despite increasing the number of iterations, the stability results stayed the same.

In their work, (Belford et al. 2018) also measured the stability of LDA but in-

stead using the mallet implementation5. In their tests, LDA showed higher

values for stability but still remained behind NMF and topic ensembling.

6.4.3.2 Context-richness

As stated previously, we used the context-richness metrics to decide which types

of words and which types of reviews are going to be used to build the topic

models.

Figures 6.4a, 6.4b and 6.4c show the context-richness for the different types of

words on the Yelp Hotels and Yelp Restaurants dataset, respectively.
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Figure 6.4: Topic model context-richness compared by part-of-speech

We can see how using only nouns yields higher values for context-richness,

regardless of the chosen number of topics. This does seem to match with intu-

itions when one thinks about words such as “birthday”, “conference”, “friends”,

“wife”, “children”, “pets”, etc.

We can see in Figures 6.5a, 6.5b and 6.5c that in all but one of the cases (where

there is a virtual draw), building topic models with specific reviews translates

into context-richer topic models. It is also evident that users use more contex-

tual words when writing reviews about hotels than when writing reviews about

restaurants.

4https://radimrehurek.com/gensim/
5http://mallet.cs.umass.edu/
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Figure 6.5: Topic model context-richness compared by review type

Based on these results, we decided to use only noun words and specific reviews

to create our topic models.

6.5 Evaluation of RCRecommender

6.5.1 Evaluation methodology

After an initial shuffling of the dataset, we split the dataset into two parts: one

for training the topic model and another one to use with the recommender. The

reason for doing this is to reduce computational time, as creating an ensemble

topic model is very expensive (for each topic model, 100 runs of NMF have to

be executed), so creating a topic model for each hyperparameter combination

in each cross-validation fold was too expensive. So with one half of the dataset

we train the topic model and with the other half we train the recommender.

To evaluate RCRecommender, we used the relevant-plus-unseen methodology

proposed in (Cremonesi et al. 2013). For the recommender dataset, we split

the dataset into two parts, a training set Train and a probe set. We get rid of all

of the ratings below 5 stars in the probe set and refer to the remainder as the

test set Test. In this way, we are ensuring that Test is composed only of items

that are relevant for the users.

We use the reviews from the training set Train to train the topic model and

transform the reviews and ratings into the format required by the Factorization

Machine. For each of the records in the test set Test, 〈〈u, i, τu,i〉, 5〉, we find

an additional m items that have not been rated by user u. This gives us m + 1
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candidates (the preferred item from the test set plus them unrated items). After

this, we use the Factorization Machine that we have trained with the training

set Train and make rating predictions for each of the m + 1 items. Once all of

the predictions have been made, then the top-n items are analyzed (n = 10). If

the preferred item is among the top-n, then we count that as a hit; otherwise,

we count it as a miss. We do that for every preferred item in the Test set and

produce the average hit rate, which in this case is the recall or the proportion

of items in the test set in which we get a hit.

A thing to note here is that, as mentioned before, Rich-Context is a context-

driven recommender that requires the user to supply a contextual query q, to

which we also apply the topic model. In reality the user will supply this query

in the form of a few words that describe the desired contextual situation. To

conduct the offline experiments that we are presenting here, we assigned q =
τu,ip, that is, the review written by user u about the preferred item ip. All of the

unrated items i will use the same value of q = τu,ip to predict ratings.

To evaluate and choose the best hyperparameter values we do model selection

with the help of grid search (in a similar fashion to what we did in Section

6.3.1). We split the dataset into five parts, using four for training and one for

testing. For each combination of hyperparameter values, we train a model using

the four parts of the dataset and test it on the remaining part. We repeat this five

times and select the model with the best performance (measured in RMSE or

recall) across the five folds. To evaluate RC we only varied one hyperparameter

variable: the number of topics. The number of latent factors was always set

to 10. For the Yelp Hotels dataset, we evaluated a variety of number of topics

ranging from 2 to 60. For the Yelp Restaurants dataset we evaluated the range

from 2 to 40 topics. For the TripAdvisor Hotels dataset we tried a different

number of topics depending on the evaluation metrics because testing using

the relevant-plus-unseen methodology took several days for a single run. For the

rating prediction evaluation we evaluated the range from 2 to 40 topics, for the

ranking prediction, we evaluated with 10, 20, 30 and 40 topics. In Section 6.4.3

we report the best values for the hyperparameters.

For all of our experiments, we used 5-fold cross-validation and relied on the

RiVaL framework (Said & Bellogín 2014) to do the splits and the performance

evaluation part. We used the libFM implementation of Factorization Machines

(Rendle 2012) with order 2 (i.e. it considers interactions between pairs of vari-

ables) but with different low rank approximations for the weights of the inter-
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actions.

6.5.2 Metrics

We measured the performance of our recommender using two types of metrics:

rating prediction and ranking prediction. In general, ranking prediction metrics

are preferred over rating prediction because they are better suited to evaluating

top-n recommendation (Steck 2013, Liu & Yang 2008, Karatzoglou et al. 2013).

However, we still use rating prediction metrics for the sake of broadening our

comparisons with other approaches and because it has little extra cost in doing

it. For rating prediction we used the RMSE. For ranking prediction we used the

Recall metrics.

RMSE is defined as:

RMSE =

√√√√∑(r̂ − r)2

|R|
, ∀ r ∈ R (6.2)

where r̂ is the predicted rating, r is the true rating and |R| is the total number

of known ratings.

The recall metric is computed using the relevant-plus-unseen methodology pro-

posed in (Cremonesi et al. 2010) that we just explained.

Recall is defined as:

recall = #hits
m

(6.3)

In our experiments, m = min(1000, |ITest|), where |ITest| is size of the set of

items that are part of the Test set. If there are more than 1000 unseen items

for a user then 1000 are taken at random, otherwise, all of the unseen items are

considered.

In the Yelp Hotels dataset there are fewer than 1000 items (98 in total as seen

on Table 6.2). For this dataset we set m = 97, as |ITest| = 98, thus having

1 relevant item plus up to 97 unseen items. This translates into higher recall

numbers because it is easier to have a hit when there are 98 items than when

there are 1000.
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6.5.3 Other recommenders

We compared Rich-Context against three non-context-aware recommenders

and against six other CARS which were described in Chapter 2. The three

non-context-aware recommenders are Factorization Machines (Rendle 2010),

Bayesian Probabilistic Matrix Factorization (BPMF) (Salakhutdinov & Mnih

2008) and Biased MF (Koren 2009). The six CARS are CAMF-C, CAMF-CI,

CAMF-CU, CAMF-CUCI (Baltrunas et al. 2011), DCR (Zheng et al. 2012a) and

DCW (Zheng et al. 2013).

For our experiments, the non-context-aware recommenders have been trained

using only the ratings information and no contextual information from reviews.

We trained several recommenders using the hyperparameter values presented

in Table 6.4 and report here the results of the best performance of each algo-

rithm. Since the contextual information is not explicitly available in the datasets

we are using, and it is required by all of the six CARS algorithms we are using

(in binary format), we designed two strategies to fill the required contextual

values.

The first strategy, which we call predefined context, consists in defining a list of

possible contextual situations and a set of keywords associated to each of the

situations. Each contextual situation represents a feature in our feature vector

and by default all of the contextual features are set to zero. We then search

through the review trying to match any of the contextual keywords. When

we find a contextual keyword we switch the value of the contextual situation

associated to that keyword from zero to one. In Tables 6.5 and 6.6, we can see

the list of contextual situations and the keywords associated to it for hotels and

restaurants. These are contextual situations that we thought could influence

the user’s choice. Each contextual situation is defined by a set of keywords.

The second strategy, which we call top topic words, consists in creating a topic

model with 10 topics. For this strategy, we will have 10 contextual features that

are set to zero by default. Then the words with the highest weight in each topic

are taken and the rest are discarded. We call these the top words. If a top word

is present in the review, then we switch its corresponding feature to one.
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Table 6.4: The list of candidate hyperparameters used to train the classifiers

Algorithm Parameter Context Values
support

Factorization Machine Number of factors No 5, 10, 15, 20
BPMF Number of factors No 10, 20, 30, 40
Biased MF Number of factors No 10, 20, 30, 40
CAMF-C Number of factors Yes 10, 20, 30, 40
CAMF-CI Number of factors Yes 10, 20, 30, 40
CAMF-CU Number of factors Yes 10, 20, 30, 40
CAMF-CUCI Number of factors Yes 10, 20, 30, 40
DCR Number of PSO particles Yes 3, 5
DCW Number of PSO particles Yes 3, 5

Context similarity threshold Yes 0.5, 0.8

6.5.4 Results for all users

Ranking prediction In Figures 6.6a 6.6b and 6.6c, we can see the ranking

prediction performance (Recall@10) of Rich-Context on the Yelp Hotels, Yelp

Restaurants and TripAdvisor Hotels datasets, respectively. We compare the per-

formance of Rich-Context against three non-context-aware recommenders and

against the six aforementioned CARS.

We can see how the performance of Rich-Context varies depending on the num-

ber of topics. Note that for the Yelp Restaurants and TripAdvisor Hotels datasets,

Rich-Context is able to beat all the other state-of-the-art recommenders regard-

less of the number of topics. This is not the case for the Yelp Hotels dataset,

where only with a couple of choices (41 and 53 topics) is Rich-Context able to

beat Factorization Machines. The lower performance on the Yelp Hotels dataset

can be explained by the fact that the dataset is quite small and there is a lot of

sparsity when the contextual variables are introduced. In this scenario, there

are not enough ratings under the same contextual situations for Rich-Context

to find a pattern. Regardless of that, there are two cases in which Rich-Context

is able to beat Factorization Machines (with 41 and 53 topics). DCR and DCW

were unable to produce recommendations for the ranking strategy (which re-

quire to make predictions for all of the unseen items in the dataset for a user) in

the Yelp Restaurants dataset due to running out of memory. None of the CARS,

BPMF and Biased MF were able to cope with the TripAvisor hotels dataset for

ranking predictions due to its size. All of them ran out of memory. The pre-
defined context strategy was the one that returned the best ranking prediction
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Table 6.5: List of keywords that refer to hotel-related contextual situations

Contextual Keywords
Situation

Accessibility Handicap, wheelchair, ramp
Airport Flight, bus, airport, plane, shuttle, transportation
Anniversary Wife, anniversary, hubby, weekend, husband
Business Colleague, business, work, coworker, job
Conference Conference, attended, group, convention,

meeting
Discount Deal, groupon, discount, hotwire, priceline
Fall September, november, october, halloween, fall
Family Family, child, son, sibling, grandparent, girl,

father, grandmother, dad, parent, grandpa, mom,
grandma, kid, boy, sister, daughter, brother,
grandfather, aunt, mother, uncle

Festivities Thanksgiving, holiday, christmas
Gambling Slot, casino, gamble, poker, roulette
Holiday Getaway, vacation, staycation, holiday
Outdoor Horse, court, kart, cart, tenni, field, bike, fitness,

golf, cabana, training, exercise, cycle
Parking Car, driver, valet, parking
Party Dj, group, music, nightlife, party, friend
Pets Pet, dog, cat
Relax Stress, relaxing, relax, getaway, quiet, jacuzzi,

treatment, facial, spa, steam, massage, relief
Romantic Bf, gf, romantic, wife, fiancee, getaway,

anniversary, romance, fiance, date, girlfriend,
hubby, weekend, husband, boyfriend

Sport event Basketball, tournament, football, field, game,
baseball, ticket, match

Spring May, spring, easter, march, april
Summer Summer, july, june, august
Wedding Ceremony,marriage, reception, wedding
Weekday Monday, tuesday, weekday, thursday, wednesday
Weekend Sunday, friday, weekend, saturday
Winter December, january, february, winter, christmas

results across all of the tested CARS.

Table 6.7 summarizes the ranking prediction results, showing that in its best

version, Rich-Context improves the performance of the best state-of-the-art al-

gorithm (which in all cases was Factorization Machines) by 2.32%, 55.07% and

30.15% on the Yelp Hotels, Yelp Restaurants and TripAdvisor Hotels datasets,

respectively.
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Table 6.6: List of keywords that refer to restaurant-related contextual situations

Contextual Keywords
Situation

Accessibility Handicap, wheelchair, ramp
Birthday Birthday, event, celebration
Breakfast Omelette, pancakes, morning, breakfast, waffle,

brunch
Dinner Dinner, evening, night
Discount Deal, coupon, groupon, discount
Fall September, november, october, halloween, fall
Family Dad, sister, daughter, parent, mother, grandma,

father, brother, son, grandmother, sibling, aunt,
mom, grandparent, grandpa, uncle, grandfather

Friends Group, boy, guy, girl, friend
Karaoke Song, music, karaoke
Kids Family, boy, child, girl, kid
Lunch Noon, lunch, afternoon
Outdoor Outdoor, summer, outside, patio
Parking Car, driver, valet, parking
Party Group, people, club, disco, music, nightlife,

night, party, guy, friend
Romantic Bf, gf, romantic, wife, fiancee, anniversary,

fiance, night, girlfriend, hubby, weekend, date,
husband, boyfriend

Sports Basketball, tv, nfl, football, sports, game,
baseball, match

Spring May, spring, easter, march, april
Summer Summer, july, june, august
Takeaway Delivery, deliver, drive, takeout, takeaway, thru
Weekday Monday, tuesday, weekday, thursday, wednesday
Weekend Sunday, friday, weekend, saturday
Winter December, january, february, winter, christmas
Work Colleague, office, coworker, job, workplace,

business, meeting

We used the Wilcoxon signed rank test to measure the statistical significance

of the ranking prediction results. We found out that the results for the Yelp

Restaurants and TripAdvisor Hotels are statistically significant (Wilcoxon signed

rank with p < 0.05), while there was not statistical significance for the Yelp

Hotels dataset.

To calculate the ranking performance improvement we used the following equa-
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Figure 6.6: Rating predictions

tion:

recall_improvement = rc_recall
fm_recall

− 1 (6.4)

Rating prediction In Figures 6.7a 6.7b and 6.7c, we can see the rating pre-

diction performance (RMSE) of Rich-Context on the Yelp Hotels, Yelp Restau-

rants and TripAdvisor Hotels datasets, respectively. Again, we compare the

performance of Rich-Context against three non-context-aware recommenders

and against the six aforementioned CARS. For all of the datasets, we can see

that Rich-Context has a better rating prediction than all of the state-of-the-art
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Table 6.7: Recall@10 comparison for all users.

Algorithm Recall@10

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 0.381 0.086 0.074

Factorization Machine 0.372 0.056 0.057
BPMF 0.150 0.014 –
Biased MF 0.068 0.016 –
CAMF-C 0.085 0.016 –
CAMF-CI 0.235 0.016 –
CAMF-CU 0.239 0.017 –
CAMF-CUCI 0.082 0.015 –
DCR 0.125 – –
DCW 0.125 – –

Improvement over SOTA 2.32% 55.07% 30.15%

recommenders regardless of the chosen number of topics, except in the Yelp

Restaurants dataset, in which, for the first 11 topics, the results of Rich-Context

are almost the same as Factorization Machines, but after using 12 topics or

more Rich-Context outperforms Factorization Machines. DCR and DCW ran out

of memory and were unable to produce recommendations for the rating strat-

egy using the TripAdvisor Hotels dataset. DCR also ran out of memory and was

unable to produce recommendations using the Yelp Restaurants. The top words
strategy was the one that returned the best rating prediction results across all

of the tested CARS.

To calculate the rating performance improvement we used the following equa-

tion:

rmse_improvement = 1− rc_rmse
fm_rmse

(6.5)

Table 6.8 summarizes the rating prediction results, showing that, in its best

version, Rich-Context improves the performance of the best state-of-the-art al-

gorithm by 4.45%, 3.29% and 8.99% on the Yelp Hotels, Yelp Restaurants and

TripAdvisor Hotels datasets, respectively.

We used the two-sided Student-t test to measure the statistical significance of

the rating prediction results (note that to measure statistical significance, we
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Figure 6.7: Rating predictions for all users

use Student-t for rating prediction and Wilcoxon for ranking prediction). We

found out that the results across all of the datasets are statistically significant

(two-sided Student t-test with p < 0.05).

We note that the results we present here are slightly different from the ones

presented in our previously-published work (Peña & Bridge 2017). The differ-

ences come due to the fact that, in order to speed the evaluation process, we

reduced the number of cross-validation iterations from 10 to 5. For the Yelp

Hotels dataset, we made another modification: we increased the number of

additional items used in the recall evaluation from 90 to 98. The consequence

is a lower recall: it is easier to predict 1 item among 90 than among 98. This
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Table 6.8: RMSE comparison for all users.

Algorithm RMSE

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 1.050 1.056 0.962

Factorization Machine 1.106 1.092 1.057
BPMF 1.495 1.405 1.435
Biased MF 1.109 1.183 1.104
CAMF-C 1.100 1.184 1.084
CAMF-CI 1.160 1.213 1.104
CAMF-CU 1.343 1.228 1.420
CAMF-CUCI 1.123 1.200 1.104
DCR 1.224 – –
DCW 1.226 1.321 –

Improvement over SOTA 4.45% 3.29% 8.99%

change in the number of additional items explains why the difference is bigger

in the Yelp Hotels dataset compared to the Yelp Restaurants dataset.

6.5.5 Recommendations for brand-new users

It is frequent to have visitors to websites where no information is known about

them. In these cases recommender systems can struggle to make accurate rec-

ommendations. We are not talking here about cold-start users, about whom

little is known. But users about whom we know nothing. They may not log

in, or they may not even have a user account with the system. Instead, they

arrive at the website and expect to enter a query (e.g. their travel intention),

and expect to receive useful context-driven recommendations. We refer to these

users as brand-new users. In this section we explore how Rich-Context performs

against other models when making recommendations to brand-new users.

To see if Rich-Context could help improve the recommendations made to brand-

new users, i.e., users who have rated no items, we repeated all of the experi-

ments but with a test set composed only of users that were not present in the

training set. The methodology we used for running the brand-new users exper-

iments is exactly the same as the one we used for the previous experiments and

the obtained behavior is very similar to the previous experiments.
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Ranking prediction In Figures 6.8a 6.8b and 6.8c, we can see the ranking

prediction performance (Recall@10) of Rich-Context on the Yelp Hotels, Yelp

Restaurants and TripAdvisor Hotels datasets, respectively. We compare the per-

formance of Rich-Context against three non-context-aware recommenders and

against the six aforementioned CARS.

Again, we can see how the performance of Rich-Context varies depending on

the number of topics. Note that for the Yelp Restaurants and TripAdvisor Ho-

tels datasets, Rich-Context is able to beat all the other state-of-the-art recom-

menders regardless of the number of topics. This is not the case for the Yelp

Hotels dataset, where only with three choices (37, 41 and 53 topics) is Rich-

Context able to beat Factorization Machines. The lower performance on the

Yelp Hotels dataset can be explained by the fact that the dataset is quite small

and there is a lot of sparsity when the contextual variables are introduced. In

this scenario, there are not enough ratings under the same contextual situa-

tions for Rich-Context to find a pattern. Regardless of that, there are three

cases in which Rich-Context is able to beat Factorization Machines (with 37,

41 and 53 topics). DCR and DCW were unable to produce recommendations

for the ranking strategy in the Yelp Restaurants dataset due to running out of

memory. None of the CARS, BPMF and Biased MF were able to cope with the

TripAvisor hotels dataset for ranking predictions due to its size. All of them ran

out of memory. The predefined context strategy was the one that returned the

best ranking prediction results across all of the tested CARS.

Table 6.9 summarizes the brand-new-users ranking prediction results, showing

that in its best version, Rich-Context improves the performance of the the best

state-of-the-art algorithm (which in all cases was Factorization Machines) by

3.67%, 47.00% and 28.5% on the Yelp Hotels, Yelp Restaurants and TripAdvisor

Hotels datasets, respectively.

As before, we used the Wilcoxon signed rank test to measure the statistical sig-

nificance of the ranking prediction results. We found out that the results for the

Yelp Restaurants and TripAdvisor Hotels are statistically significant (Wilcoxon

signed rank with p < 0.05), while there was not statistical significance for the

Yelp Hotels dataset.

Rating prediction In Figures 6.9a 6.9b and 6.9c, we can see the rating predic-

tion performance (RMSE) of Rich-Context on the Yelp Hotels, Yelp Restaurants

and TripAdvisor Hotels datasets, respectively. For all of the datasets, we can see
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Figure 6.8: Ranking predictions for brand-new users

that Rich-Context has a better rating prediction than all of the state-of-the-art

recommenders regardless of the chosen number of topics, except in the Yelp

Restaurants dataset, in which, for the first 11 topics, the results of Rich-Context

are almost the same as Factorization Machines, but after using 12 topics or

more Rich-Context outperforms Factorization Machines. DCR and DCW ran out

of memory and were unable to produce recommendations for the rating task in

the Yelp Restaurants and TripAdvisor Hotels datasets. The top words strategy

was the one that returned the best rating prediction results across all of the

tested CARS.

Table 6.10 summarizes the rating prediction results, showing that in its best

version, Rich-Context improves the performance of the best state-of-the-art al-
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Table 6.9: Recall@10 comparison for brand-new users.

Algorithm Recall@10

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 0.362 0.088 0.075

Factorization Machine 0.349 0.060 0.058
BPMF 0.147 0.018 –
Biased MF 0.062 0.020 –
CAMF-C 0.083 0.019 –
CAMF-CI 0.220 0.018 –
CAMF-CU 0.269 0.022 –
CAMF-CUCI 0.091 0.017 –
DCR 0.096 – –
DCW 0.096 – –

Improvement over SOTA 3.67% 47.00% 20.50%

gorithm by 5.43%, 4.54% and 9.96% on the Yelp Hotels, Yelp Restaurants and

TripAdvisor Hotels datasets, respectively.

As before, we used the two-sided Student-t test to measure the statistical signif-

icance of the rating prediction results. We found out that the results across all of

the datasets are statistically significant (two-sided Student t-test with p < 0.05).

Table 6.10: RMSE comparison for new users across all datasets.

Algorithm RMSE

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 1.063 1.219 0.993

Factorization Machine 1.124 1.277 1.103
BPMF 1.543 1.653 1.509
Biased MF 1.124 1.295 1.144
CAMF-C 1.106 1.291 1.119
CAMF-CI 1.165 1.335 1.140
CAMF-CU 1.370 1.365 1.471
CAMF-CUCI 1.139 1.314 1.135
DCR 1.188 – –
DCW 1.188 – –

Improvement over SOTA 5.43% 4.54% 9.96%
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Figure 6.9: Rating predictions for new users

6.6 Implementation

To implement our model, we used Python 2.7.11. In particular we used the

version that comes with Anaconda6 2-5.0. To identify the language in which

a review was written we used the langdectet 1.0.7 package. To produce

the part-of-speech tags for the words, we used nltk’s7 PerceptronTagger. To

lemmatize the text, we used the Pattern8 2.6 package. All of the classifiers

we used to discriminate between specific and generic reviews come from the

6https://anaconda.org/anaconda/python
7https://www.nltk.org/
8https://www.clips.uantwerpen.be/pages/pattern-en
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scikit-learn9 0.19.0 package in Python. The LDA implementation we used

comes from gensim10 0.12.2. We used Derek Greene’s topic ensemble imple-

mentation for topic modeling11. For splitting the data and evaluating the rec-

ommendation results, we used RiVaL12 0.3. We used Steffen Rendle’s imple-

mentation of Factorization Machines, which he calls libFM13 1.4.2. For the

baseline CARS (CAMF-C, CAMF-CI, CAMF-CU, CAMF-CUCI, DCR, DCW), BPMF

and Biased MF , we used CARSKit14

6.7 Summary

Overall we can see that for all of the datasets we worked with, Rich-Context is

able to outperform the state-of-the-art. In the two largest datasets, Yelp Restau-

rants and TripAdvisor Hotels, the ranking prediction improvements are signif-

icantly bigger as there is less contextual sparsity. The improvements over the

rating predictions are also significant across the three datasets. These results

show that Rich-Context is not only very accurate, but also very consistent. Com-

paring Rich-Context against several state-of-the-art recommenders, including

six that support contextual information, shows how good our recommender is.

Moreover, the fact that we are using the RiVaL evaluation framework to make

the splits of the data and the evaluation of the results gives us the confidence

to state that our recommender successfully exploits contextual information to

make more accurate recommendations.

We can also see from these results that Rich-Context outperforms current CARS

in both small and large datasets, but it is clear that in large datasets the gap

between Rich-Context and the state-of-the-art CARS is much bigger.

9http://scikit-learn.org/
10https://radimrehurek.com/gensim/
11https://github.com/derekgreene/topic-ensemble
12https://github.com/recommenders/rival
13http://www.libfm.org/
14https://github.com/irecsys/CARSKit
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Chapter 7

Conclusions

This chapter summarizes what has been achieved in this thesis and discusses

future work.

7.1 Summary

In this thesis we addressed the problem of making context-driven recommen-

dations. Given the fact that explicit contextual information is rarely available

in real-world datasets, we exploited user-generated reviews to extract contex-

tual information in order to make recommendations that correspond with the

users’ goals. We introduced Rich-Context, a context-driven recommender sys-

tem that mines contextual information from user-generated reviews to produce

context-driven recommendations.

To be able to extract the contextual information from the reviews, we made the

assumption that there are two types of reviews, ones that describe experiences,

which we call specific reviews, and others that do not, which we call generic.
Given the fact that every experience has a context associated to it, specific re-

views tend to have more contextual information than their generic counterpart.

To discriminate between specific and generic reviews, we created RCClassi-

fier. RCClassifier assigns POS tags to the words in the reviews and creates

features based on those tags that help to distinguish between the two types of

reviews. By trying out different classification algorithms and using resampling

techniques, we were able to boost the performance of RCClassifier.
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To extract the contextual information out of the reviews, we designed RCMiner.

RCMiner builds a topic model using only the specific reviews, and after applying

the topic models to all of the reviews, it determines which topics appear more

frequently in specific reviews than in generic ones and labels them as contextual

topics. Once the contextual topics have been identified, every document can

then be represented as a vector of weights of the contextual topics.

One of the factors crucial to the correct extraction of contextual information

out of the reviews was to produce high quality topic models. To achieve this,

we designed a methodology based on metrics first to measure the stability of

the topic modeling algorithms, and then to measure the amount of contextual

information contained in the resulting topic models. The former metrics helped

us to decide which topic modeling algorithm should be used while the latter

helped us decide what type of data should be given to the topic modeling algo-

rithm. In this way, we were able to extract contextual information out of the

reviews that was useful for the purpose of producing recommendations.

RCMiner has the additional advantage that it is able to extract context in an

unsupervised way, without the need for human intervention or the need to

pre-define contextual keywords. This has the extra benefit that the extracted

context is open-ended. The extracted context reflects what the users have writ-

ten about and is not constrained to pre-defined contextual situations, as in most

CARS.

Once the contextual information has been obtained, RCRecommender takes it

along with the ratings and produces recommendations. After experimenting

with several algorithms that support side-information, we found that Factoriza-

tion Machines produced the best results both in ranking and rating prediction

performance and in terms of coverage.

Evaluation of Rich-Context compared to nine state-of-the-art recommender sys-

tems, including six CARS, shows that Rich-Context has superior performance

in both rating and ranking prediction across multiple publicly available, sparse,

real-world datasets. Rich-Context is able to beat all of the state-of-the-art rec-

ommender across all of the datasets. By using the recommender systems eval-

uation library RiVaL (Said & Bellogín 2014), we bring transparency and confi-

dence to our results.

Finally, Rich-Context was also evaluated for users who were present in the test

set but not in the training set, whom we call brand-new users. This type of user
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is quite common on websites and are also known as first-time visitors. We com-

pared Rich-Context to nine state-of-the-art recommender systems, including six

CARS, and the results were very similar to the case where we did the evalua-

tion on all users. Again Rich-Context showed superior performance in terms of

rating and ranking prediction across all of the datasets.

7.2 Future Work

Provision of explanations Given the fact that Rich-Context creates topic

models in order to produce recommendations and the fact that topic models

contain information about what is being discussed about items, we can exploit

this, along with the already extracted contextual information, to produce ex-

planations about why a certain item is being recommended. The advantage

of producing explanations in this way is that they are consistent with the rec-

ommendation mechanism. This will result in a more transparent recommender

system in which users are able to understand why a certain item was suggested,

increasing their overall trust in the recommender system.

Improving the metrics that measure the quality of topic models One of the

drawbacks of Rich-Context and, for that matter, any other recommender system

that is based on unstructured text corpora is that the training time of the algo-

rithm can be quite high when dealing with a large number of documents (for

instance the TripAdvisor hotels dataset). At the time of using the recommender,

this is not a major issue since the prediction time is very low. However, during

the process of hyperparameter tuning this becomes a problem, in particular at

the time of selecting the best value for the number of topics k.

As seen in Chapter 6, the number of topics used to build the topic model has a

direct impact on the performance of Rich-Context both for rating and ranking

prediction tasks. Differently to the number of factors in a latent-factor model,

a higher number of topics does not lead to better recommendations. It is there-

fore crucial to design a metric that can reveal the quality of a topic model for

recommendation purposes, so that Rich-Context does not have to be trained for

each candidate value of k. So far, we were able to use metrics to help us choose

the best topic modeling algorithm (see Section 5.6.1) and to determine the data

that should be used to train the topic models (see Section 5.6.2). A metric to
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determine the best value for k is necessary.

Mixing context extraction with feature extraction and sentiment analysis

With the goal of improving further the accuracy of the recommendations and

with the additional benefit of improving the above proposed explanations for

recommendations, features that describe the items can also be extracted from

the reviews along with the sentiment towards those features. Two recent ap-

proaches that are able to extract features are (Musto et al. 2017) and (Chen

et al. 2015), while (Diao et al. 2014) extracts both sentiments and features. If

a future version of Rich-Context were to mix the mined features with the con-

text that Rich-Context can already extract, better recommendations might be

produced. Not only that, but by extracting the features and sentiments, along

with the contextual information that is relevant for users, there is a deeper un-

derstanding of what things are important for each user. This understanding can

then be used to produce better, clearer and more transparent explanations that

increase the trust that users have in the recommender.

Applications to other domains Topic models have been successfully used

to make predictions by exploiting unstructured text in other domains. For in-

stance, in (Lehman et al. 2012, 2014, Zalewski et al. 2017) a model that makes

predictions based on hospital discharge summaries of intensive care units is

presented. Their goal is to identify patients that have a high mortality risk at

the time of being discharged based on vital signs and discharge summaries.

Similarly to Rich-Context, this approach does not require expert intervention in

order to define which information is relevant. This problem can be modeled as

a recommendation problem in which the users are the patients, the items are

the treatments to recommend and the interaction is the mortality of the patient

after one year of being discharged. Following a variation of the methodology

used by Rich-Context, recommendations for treatments can be suggested with

the goal of reducing the mortality rate. The application of Rich-Context in other

areas with unstructured text such as law or news could also be explored.
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Acronyms

ADSD Average Descriptor Set Difference.

ATS Average Term Stability.

BPMF Bayesian Probabilistic Matrix Factorization.

CAMF Context-Aware Matrix Factorization.

CARS Context-Aware Recommender Systems.

COR Contextual Opinions Recommender.

CSCB Cold Start Context-Based Hotel Recommender.

CSLIM Contextual SLIM.

CTMS Contextual Topic Model Score.

CTS Contextual Topic Score.

DCR Differential Context Relaxation.

DCW Differential Context Weighting.

ENN Edited Nearest Neighbors.

FM Factorization Machine.

HFT Hidden Factors as Topics.

HOSVD High Order Singular Value Decomposition.

JMARS Jointly Modeling Aspects, Ratings and Sentiments.

JST Joint Sentiment-Topic Model.

k-NN k-Nearest Neighbour.

LCMF Latent Context Matrix Factorization Recommendation.
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Acronyms

LDA Latent Dirichlet Allocation.

LRM Linear Regression Model.

LSA Latent Semantic Analysis.

MAE Mean Absolute Error.

MCABSA Multi-Criteria Aspect-Based Sentiment Analysis.

MSE Mean Squared Error.

NCL Neighborhood Cleaning Rule.

nDCG Normalized Discounted Cumulative Gain.

NLP Natural Language Processing.

NMF Non-negative Matrix Factorization.

OPR Opinionated Product Recommender.

pLSA Probabilistic Latent Semantic Analysis.

POS part-of-speech.

PRM Probabilistic Regression Model.

PSO Particle Swarm Optimization.

RC Rich-Context.

RMR Ratings Meet Reviews.

RMSE Root Mean Squared Error.

SABRE Sentiment Aspect-Based Retrieval.

SLIM Sparse Linear Method.

SMOTE Synthetic Minority Over-sampling Technique.

SOTA state-of-the-art.

SVD Singular Value Decomposition.

TC Topic-Criteria.

TF-IDF Term Frequency - Inverse Document Frequency.

TSC Topic-Sentiment Criteria.
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Nomenclature

A The document-term matrix.

C A contextual dimension.

C A set of contextual dimensions.

c A vector containing the contextual conditions for each context dimension.

c The index of a contextual dimension.

D A set of documents.

d A document.

H The topic-term matrix.

I A set of items.

i An item.

k The number of topics.

l The number of latent factors in a latent factor model.

M A topic model.

M An esemble matrix.

P The latent features user matrix.

pu The latent features vector of user u.

Q The latent features item matrix.

qi The latent features vector of item i.

R The ratings matrix.

R A set of ratings.
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Nomenclature

r A vector of ratings.

ru,i The rating that user u gave to item i.

ru,i,c The rating that user u gave to item i under the contextual conditions c.

r̂u,i The predicted rating that user u would give to item i.

r̂u,i,c The predicted rating that user u would give to item i under the contextual

conditions c.

T A set of topics.

t A topic.

U A set of users.

u A user.

V A vocabulary.

W The document-topic matrix.

W A set of words.

w A word.

α The offset or average rating.

βi The bias of item i.

βu The bias of user u.

τu,i The review that user u wrote about item i.

Υ A set of reviews.

ϕ A vector of weights.

ϕ A weight.
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