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Context in Recommender Systems
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• Most	of	them	predefine	context
• Small	number	of	features
• Small	number	of	values

Context	Aware	Recommender	Systems

• Context	is	richer,	open-ended
• Birthday,	anniversary,	parking,	accessibility,	eat-in	vs	take	away,	pet	friendly,	…

Open-ended	context	is	very	wide

I’m	travelling	for: Work								Leisure
Companion: Solo									Couple								Family
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Goals
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• Treat	context	as	open-ended
• Unsupervised	(not	predefined	keywords)
• Good	performance	on	sparse	datasets

Recommendation	model

• Datasets
• Big	(+10	000	records)
• Sparse
• Multiple	from	different	domains
• Publicly	available
• Real-world

• Third-party	evaluation	tool

Evaluation	methodology
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Recommendations	
without	
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representing	
context.

Better	prediction	
performance
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for	offline	ranking	

evaluation.

Better	
performance	for	
brand-new	users.

Extract	context	
from	reviews	in	an	
unsupervised	way
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selecting	the	best	
topic	modeling	
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New	metrics	to	
measure	context-
richness	of	topic	

models.

Improved	
methodology	to	
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Assumptions
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• “During	the	summer,	we	like	to	take	a	mini	staycation.	This	
year	it	was	extra	special	as	we	also	got	engaged.	Our	stay	
at	the	Biltmore	was	just	fantastic.	The	service	exceptional,	
the	food	amazing.”

Specific	Review

• “Nice	hotel,	all	the	amenities	you	need,	great	complex	of	
pools.”

Generic	Review
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Assumptions
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• “During	the	summer,	we	like	to	take	a	mini	staycation.	This	
year	it	was	extra	special	as	we	also	got	engaged.	Our	stay	
at	the	Biltmore	was	just	fantastic.	The	service	exceptional,	
the	food	amazing.”

Specific	Review

• “Nice	hotel,	all	the	amenities	you	need,	great	complex	of	
pools.”

Generic	Review

Specific	reviews	contain	
more	contextual	
information	than	generic	
ones.
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Rich Context (RC)
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Rich	Context

RCClassifier RCMiner RCRecommender
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Reviews Classification
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• 300 tagged reviews

• Random Forest Classifier
• Features

• LogWords: log of number of 
words in the review + 1

• Vsum: log of number of verbs in 
the review + 1

• VBDSum: log of number of verbs 
in the past tense in the review + 1

• ProRatio: ratio of log of number 
of personal pronouns + 1 to 
LogWords
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Context Extraction
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Reviews Classifier

Specific
Reviews

Generic 
Reviews

Topic 
Modeling
Algorithm

Topic
Model Filter Contextual

Topics
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Ensemble Topic Modeling
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• More	stable	topic	models.
• Context-richer	topics.

Advantages

Source: Stability	of	Topic	Modeling	via	Matrix	Factorization.	Belford	et	al

Topic 
Modeling
Algorithm

Original
Corpus

Base
Models

Generation Step

Aggregation
Algorithm

Aggregation Step

Ensemble
Topic Model
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Topic Model Validation

What	topic	
modeling	is	more	

stable?

Which	reviews	data	
produces	context-

richer	topic	
models?
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Topic Model Validation (Stability)
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Term Difference Topic Stability



Topic Model Validation (Context-Richness)
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Part of speech types Specific vs generic reviews



Context Extraction
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• Apply the topic model to both 
specific and generic reviews.

• Count the number of times 
topics appear in specific and 
generic reviews.

• The ones that appear more 
frequently in specific reviews are 
labeled as contextual topics.

Sp
ec
ific

Ge
ne
ric

Topic Distribution Among 
Reviews

0

0.25

0.5

0.75

1.0

Contextual Topics
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Recommendations
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Context Factorization
Machines

Reviews
&

Ratings

RecommendationUser Text

Context
&

Ratings
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Evaluation - Dataset Description
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Yelp	Hotels
• 3,809	reviews
• 3,205	users
• 98	items
• 98.79%	sparsity

Yelp	
Restaurants
• 147,864	reviews
• 35,021	users
• 2,550	items
• 99.83%	sparsity

TripAdvisor	
Hotels
• 726,426	reviews
• 526,717	users
• 3,299	items
• 99.96%	sparsity

2019/01/15



Evaluation - Ranking Prediction (Recall@10)
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•Yelp	Hotels	(+2.32%)
•Yelp	Restaurants	(+55.07%)
•TripAdvisor	Hotels	(+30.15%)

Improvement	(all	users)

•Yelp	Hotels	(+3.67%)
•Yelp	Restaurants	(+47.00%)
•TripAdvisor	Hotels	(+20.50%)

Improvement	(new	users)

Compared to best SOTA



Evaluation - Rating Prediction (RMSE)
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•Yelp	Hotels	(+4.45%)
•Yelp	Restaurants	(+3.29%)
•TripAdvisor	Hotels	(+8.99%)

Improvement	(all	users)

•Yelp	Hotels	(+5.44%)
•Yelp	Restaurants	(+4.54%)
•TripAdvisor	Hotels	(+9.96%)

Improvement	(new	users)

Compared to best SOTA



Final Thoughts
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• We	present	a	context-driven	recommender	system	that	does	not	pre-defined	
contextual	words.

• We	improve	recommendations	by	using	the	mined	contextual	information	as	side-
information	in	factorization	machines.

• The	proposed	model	does	not	need	expertise	about	contextual	information.

Conclusions

• Improve	the	topic	model	quality	metrics	in	order	to	evaluate	topic	models	without	
having	to	run	the	recommender	(like	a	classifier).

• Use	topic	models	to	produce	explanations	of	recommendations.
• Extrapolate	the	same	model	to	other	scenarios	where	documents	are	available	and	
recommendations	are	needed,	for	instance	using	medical	records,	law,	etc.

Future	Work
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Topic Modeling
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“During	the	summer,	we	like	to	take	a	mini	staycation.	This	year	it	was	
extra	special	as	we	also	got	engaged.	Our	stay	at	the	Biltmore	was	just	
fantastic.	The	service	exceptional,	the	food	amazing- it	was	great	at	
the	pool,	Wrights	and	also	at	Frank	and	Alberts.	The	only	reason	I	am	
not	giving	it	a	full	5	stars	is	the	'upgraded'	room	was	just	a	nice	basic	
room.	Though	it	was	certainly	nice,	it	wasnt what	I	expected	for	being	
the	Biltmore.	However,	everything	else	certainly	lived	up	to	that	
expectation”.

“During	the	summer,	we	like	to	take	a	mini	staycation.	This	year	it	was	
extra	special	as	we	also	got	engaged.	Our	stay	at	the	Biltmore	was	just	
fantastic.	The	service	exceptional,	the	food	amazing- it	was	great	at	
the	pool,	Wrights	and	also	at	Frank	and	Alberts.	The	only	reason	I	am	
not	giving	it	a	full	5	stars	is	the	'upgraded'	room	was	just	a	nice	basic	
room.	Though	it	was	certainly	nice,	it	wasnt what	I	expected	for	being	
the	Biltmore.	However,	everything	else	certainly	lived	up	to	that	
expectation”.

Summer (0.04)
Weekend (0.02)
June (0.01)
…

Holiday (0.05)
Romantic (0.03)
Staycation					(0.01)
…

Room	 (0.05)
Pool	 (0.04)
Sauna (0.01)
…

Free (0.03)
Cheap (0.02)
Expensive (0.01)
…

Topic Distribution of the 
Review

0

0.25

0.5

0.75

1.0

• Each document is a random mixture of 
corpus-wide topics

• Each topic is composed of words that 
co-occur along documents

60%

20%

20%

2019/01/15



Number Of Topics vs Performance
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Yelp Restaurants

The number of
topics matters!



Topic Model Validation (Stability)
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Yelp Hotels Yelp Restaurants TripAdvisor Hotels

Average Descriptor Set Difference



Topic Model Validation (Stability)
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Yelp Hotels Yelp Restaurants TripAdvisor Hotels

Average Term Stability



Topic Model Validation (Context-Richness)
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family	 0.194
sunday		 0.086
town 0.069
brunch	 0.029
weekend	 0.021

sushi 0.271
bar 0.055
town 0.021
spot 0.020
saturday	 0.014

Topic	1 Topic	2

Score:	0.33 Score:	0.014

wife	 0.358
date	 0.026
birthday	 0.020
anniversary	 0.019
weekend	 0.015

service 0.435
atmosphere 0.023
customer 0.018
table 0.012
drink 0.011

Topic	3

Score:	0.438

Topic	4

Score:	0.0

𝑡𝑠(𝑡) =&(𝑝()∗ 𝑣())
�

(

Topic	Model	Score:	0.1955
The topic model score
is the average of the
topic scores

2019/01/15



Evaluation - Generated Topic Models (Yelp Restaurant)

Ratio Word	1 Word	2 Word	3 Word	4 Word5

Topic	1 2.03 night dinner friend saturday friday

Topic	2 1.61 lunch today day friend yesterday

Topic	3 1.34 time couple week minute hour

Topic	4 1.1 breakfast morning sunday club day

Topic	5 1.07 review yelp experience star read

Topic	6 0.99 scottsdale location town experience tempe

Topic	7 0.93 restaurant phoenix area mexican week

Topic	8 0.85 chicken pizza burger sandwich cheese

Topic	9 0.75 place area bar love home

Topic	10 0.72 food service mexican atmosphere price

3326/09/2018



Evaluation - Ranking Prediction
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1.7 Things to buy 6

Algorithm Recall@10

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 0.381 0.086 0.074

Factorization Machines 0.372 0.056 0.057
BPMF 0.150 0.014 Out of memory
Biased MF 0.068 0.016 Out of memory
CAMF-C 0.085 0.016 Out of memory
CAMF-CI 0.235 0.016 Out of memory
CAMF-CU 0.239 0.017 Out of memory
CAMF-CUCI 0.082 0.015 Out of memory
DCR 0.125 Out of memory Out of memory
DCW 0.125 Out of memory Out of memory

Improvement (all users) 2.32% 55.07% 30.15%

Improvement (new users) 3.67% 47.00% 20.50%

Table 1.1: Recall@10 comparison for all users.

Algorithm RMSE

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 1.050 1.056 0.962

Factorization Machines 1.106 1.092 1.057
BPMF 1.495 1.405 1.435
Biased MF 1.109 1.183 1.104
CAMF-C 1.100 1.184 1.084
CAMF-CI 1.160 1.213 1.104
CAMF-CU 1.343 1.228 1.420
CAMF-CUCI 1.123 1.200 1.104
DCR 1.224 Out of memory Out of memory
DCW 1.226 1.321 Out of memory

Improvement (all users) 4.45% 3.29% 8.99%

Improvement (new users) 5.43% 4.54% 9.96%

Table 1.2: RMSE comparison for all users.



Evaluation - Rating Prediction

26/09/2018 35

1.7 Things to buy 6

Algorithm Recall@10

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 0.381 0.086 0.074

Factorization Machines 0.372 0.056 0.057
BPMF 0.150 0.014 Out of memory
Biased MF 0.068 0.016 Out of memory
CAMF-C 0.085 0.016 Out of memory
CAMF-CI 0.235 0.016 Out of memory
CAMF-CU 0.239 0.017 Out of memory
CAMF-CUCI 0.082 0.015 Out of memory
DCR 0.125 Out of memory Out of memory
DCW 0.125 Out of memory Out of memory

Improvement (all users) 2.32% 55.07% 30.15%

Improvement (new users) 3.67% 47.00% 20.50%

Table 1.1: Recall@10 comparison for all users.

Algorithm RMSE

Yelp TripAdvisor

Hotels Restaurants Hotels

Rich-Context 1.050 1.056 0.962

Factorization Machines 1.106 1.092 1.057
BPMF 1.495 1.405 1.435
Biased MF 1.109 1.183 1.104
CAMF-C 1.100 1.184 1.084
CAMF-CI 1.160 1.213 1.104
CAMF-CU 1.343 1.228 1.420
CAMF-CUCI 1.123 1.200 1.104
DCR 1.224 Out of memory Out of memory
DCW 1.226 1.321 Out of memory

Improvement (all users) 4.45% 3.29% 8.99%

Improvement (new users) 5.43% 4.54% 9.96%

Table 1.2: RMSE comparison for all users.



Topic Model Validation (Stability)

362019/01/15
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Topic Model Validation (Context-Richness)
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Evaluation - Ranking Prediction

Evaluation	metric	Recall@10

9	SOTA

6	CARS 3	non-CARS

Rich-Context	vs	best	SOTA

Yelp	Hotels
(+2.32%)

Yelp	
Restaurants
(+55.07%)

TripAdvisor	
Hotels

(+30.15%)
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Contributions

Recommendations	
without	

predefining	context

New	way	of	
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context.

Better	prediction	
performance
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unsupervised	way
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