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Context in Recommender Systems

sl Context Aware Recommender Systems

e Most of them predefine context
¢ Small number of features
¢ Small number of values

I’'m travelling for: O Work O Leisure
Companion: O Solo OCoupIe O Family

mml  Open-ended context is very wide

e Context is richer, open-ended
e Birthday, anniversary, parking, accessibility, eat-in vs take away, pet friendly, ...




Goals

Recommendation model

e Treat context as open-ended
e Unsupervised (not predefined keywords)
e Good performance on sparse datasets

Evaluation methodology

e Datasets
e Big (+10 000 records)
e Sparse
e Multiple from different domains
e Publicly available
e Real-world
e Third-party evaluation tool
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Assumptions

Specific Review

e “During the summer, we like to take a mini staycation. This
year it was extra special as we also got engaged. Our stay
at the Biltmore was just fantastic. The service exceptional,
the food amazing.”

Generic Review

e “Nice hotel, all the amenities you need, great complex of
pools.”
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Assumptions

sl Specific Review

e “During the summer, we like to take a mini staycation. This
year it was extra special as we also got engaged. Our stay
at the Biltmore was just fantastic. The service exceptional,

- V4
the food amazing. Specific reviews contain

more contextual -
Generic Review

information than generic
ones.

e “Nice hotel, all the amenities you need, great complex of

pools.”




Rich Context (RC)

Rich Context

RCClassifier RCMiner
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Reviews Classification

« 300 tagged reviews
« Random Forest Classifier
 Features

« LogWords: log of number of
words in the review + 1

« Vsum: log of number of verbsin
the review + 1

« VBDSum: log of number of verbs
in the past tense in the review + 1

1.2 Classification of Hotel Reviews
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———————
-
-

Specific ] Topic

Rp . —( Modeling
evIews Algorithm
Generic | ______-----"""

Reviews

--
=~

) Contextual
Topics




14"7'9

Insight

Ensemble Topic Modeling
Source: Stability of Topic Modeling via Matrix Factorization. Belford et al

............................................................................................................
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e More stable topic models.
e Context-richer topics.




Topic Model Validation

Which reviews data
produces context-
richer topic
models?

What topic
modeling is more
stable?




L

Insight

Centre for Data Analytics

Topic Model Validation (Stability)

| Term Difference | | Topic Stability |
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Topic Model Validation (Context-Richness)
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Context Extraction

Apply the topic model to both
specific and generic reviews.

Count the number of times
topics appear in specific and
generic reviews.

The ones that appear more
frequently in specific reviews are
labeled as contextual topics.
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Topic Distribution Among
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Evaluation - Dataset Description

Yelp Hotels Yelp TripAdvisor
e Restaurants Hotels
* 3,205 users e 147,864 reviews e 726,426 reviews

* 98 items e 35,021 users ® 526,717 users
* 98.79% sparsity e 2,550 items e 3,299 items

e 99.83% sparsity ® 99.96% sparsity
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Evaluation - Ranking Prediction (Recall@10)
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Compared to best SOTA
O

e Yelp Hotels (+2.32%)
e Yelp Restaurants (+55.07%)
e TripAdvisor Hotels (+30.15%)

=l Improvement (new users) |l

e Yelp Hotels (+3.67%)
e Yelp Restaurants (+47.00%)
e TripAdvisor Hotels (+20.50%)
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Evaluation - Rating Prediction (RMSE)

1.4- o Improvement (all users) |
Algorithm
% Rich-Context e Yelp Hotels (+4.45%)
37 @ Factorization Machines OYeIp Restaurants (+3.29%)
L ® BPVF , . .
5 ® biascd MF e TripAdvisor Hotels (+8.99%)
@ 12- @® CAMFC
® CAMFCI
© CAMF-CU = Improvement (new users)
@® CAMF-CUCI
L1r DCR * Yelp Hotels (+5.44%)
Yo —K\ @ DCw o Yelp Restaurants (+4.54%)
1ol S e TripAdvisor Hotels (+9.96%)
' ~
“w
Yelp Il|otels Yelp Resltaurants TripAdvislor Hotels
Dataset
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Final Thoughts

=i Conclusions

e We present a context-driven recommender system that does not pre-defined
contextual words.

e We improve recommendations by using the mined contextual information as side-
information in factorization machines.

e The proposed model does not need expertise about contextual information.

B e

e Improve the topic model quality metrics in order to evaluate topic models without
having to run the recommender (like a classifier).

¢ Use topic models to produce explanations of recommendations.

e Extrapolate the same model to other scenarios where documents are available and
recommendations are needed, for instance using medical records, law, etc.
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Topic Modeling

« Each documentis a random mixture of —
Topic Distribution of the

Review

corpus-wide topics ol
« Each topicis composed of words that |

co-occur along documents/./ i
“During the@,gwm-mmmm@ic year it was
extra special as we also got engaged. Our stay at the Biltmore was just

fantastic. The service exceptional, the food amazing- it was great at

thelDOOh#&rigtrtsTmrarso ot Frank and Alberts. The only reason | am
not giving it a full 5 stars is the upgradedM—.é—' 0.25 I~

Preom ®keueh-itisas certaginly nice, it wasnt what | expected for being
the Biltmore. However, everything else certainly lived tp to that 0

expectation”.

0.5 |—

Summer  (0.04) Free (0.03)
Weekend  (0.02) Cheap (0.02)
June (0.01) Expensive (0.01)
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Number Of Topics vs Performance

Yelp Restaurants

—— Rich Context
- = - Factorization Machines

1.09
L
2 1.08
=
e The number of
1.07 tOPiCS matters!
1.06
1.05
0 10 20 30 40 50 60

Number of topics
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Topic Model Validation (Stability)

Average Term Stability

Yelp Hotels Yelp Restaurants TripAdvisor Hotels
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Topic Model Validation (Context-Richness)

\ Score: 0.33

Score: 0.014

/ Topic 1 Topic 2 Topic 4 \
family 0.194 sushi 0.271 service 0.435
sunday 0.086 bar 0.055 atmosphere 0.023
town 0.069 town 0.021 customer 0.018
brunch 0.029 spot 0.020 table 0.012
weekend  0.021 saturday  0.014 drink 0.011

Score: 0.438

Score: 0.0 /

Topic Model Score: 0.1955

£5(6) = ) (P Vie)

The topic model score
is the average of the
topic scores




L

Insight

Centre for Data Analytics

Evaluation - Generated Topic Models (Yelp Restaurant)

| Ratio _Word1l _Word2 __Word3__Wordd__Words __

2.03 night dinner friend saturday friday
MI.GI lunch today day friend yesterday
MLM time couple week minute hour
Ml.l breakfast  morning sunday club day
MLW review yelp experience star read
MO% scottsdale location town experience tempe
0.93 restaurant phoenix area mexican week
0.85 chicken pizza burger sandwich  cheese
MOJS place area bar love home
0.72 food service mexican atmosphere price

A N
' léi%“.;! '



Evaluation - Ranking Prediction
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Algorithm Recall@10
Yelp TripAdvisor
Hotels Restaurants Hotels
Rich-Context 0.381 0.086 0.074
Factorization Machines 0.372 0.056 0.057
BPMF 0.150 0.014  Out of memory
Biased MF 0.068 0.016  Out of memory
CAMF-C 0.085 0.016 Out of memory
CAMEF-CI 0.235 0.016  Out of memory
CAMF-CU 0.239 0.017  Out of memory
CAMF-CUCI 0.082 0.015  Out of memory
DCR 0.125 Out of memory Out of memory
DCW 0.125 Out of memory Out of memory
Improvement (all users)  2.32% 55.07 % 30.15%
Improvement (new users) 3.67% 47.00 % 20.50%
4 W,
A WA
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Evaluation - Rating Prediction

Algorithm RMSE
Yelp TripAdvisor
Hotels Restaurants Hotels
Rich-Context 1.050 1.056 0.962
Factorization Machines 1.106 1.092 1.057
BPMF 1.495 1.405 1.435
Biased MF 1.109 1.183 1.104
CAME-C 1.100 1.184 1.084
CAME-CI 1.160 1.213 1.104
CAMEF-CU 1.343 1.228 1.420
CAMEF-CUCI 1.123 1.200 1.104
DCR 1.224  Out of memory Out of memory
DCW 1.226 1.321 Out of memory
Improvement (all users)  4.45% 3.29% 8.99%
Improvement (new users) 5.43% 4.54 % 9.96 %

. — I
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Topic Model Validation (Stability)

Average Descriptor Set Difference
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Topic Model Validation (Context-Richness)

Context richness score
° ° ° ° ° °
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Evaluation - Ranking Prediction

Evaluation metric Recall@10

Rich-Context vs best SOTA

Yelp Hotels Yelp TripAdvisor
AR 3 non-CARS : Restaurants Hotels |

(o) |
(+2.32%) (+55.07%) Wl (+30.15%) |
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