Empowering Citizens. Smarter Societies.

Rich-Context: An Unsupervised Context-Driven Recommender System Based On User Reviews

University College Cork

Francisco J. Peña

Supervisor: Dr. Derek Bridge

A World Leading SFI Research Centre

Problem

2019/01/15

Context in Recommender Systems

Context Aware Recommender Systems

- Most of them predefine context
- Small number of features
- Small number of values

I'm travelling for:	\bigcirc Work	
Companion:	🔿 Solo	\bigcirc Couple \bigcirc Family

Open-ended context is very wide

- Context is richer, open-ended
- Birthday, anniversary, parking, accessibility, eat-in vs take away, pet friendly, ...

Goals

Recommendation model

- Treat context as open-ended
- Unsupervised (not predefined keywords)
- Good performance on sparse datasets

Evaluation methodology

- Datasets
 - Big (+10 000 records)
 - Sparse
 - Multiple from different domains
 - Publicly available
 - Real-world
- Third-party evaluation tool

Recommendations without predefining context

> New way of representing context.

> > A World Leading SFI Research Centre 5

Recommendations without predefining context

> New way of representing context.

Better prediction performance

New methodology for offline ranking evaluation.

Better performance for brand-new users.

Recommendations without predefining context

> New way of representing context.

New methodology for offline ranking evaluation.

Better prediction

performance

Better performance for brand-new users. Extract context from reviews in an unsupervised way

> Methodology for selecting the best topic modeling algorithm.

New metrics to measure contextrichness of topic models.

Improved methodology to classify reviews.

Assumptions

Specific Review

 "During the summer, we like to take a mini staycation. This year it was extra special as we also got engaged. Our stay at the Biltmore was just fantastic. The service exceptional, the food amazing."

Generic Review

"Nice hotel, all the amenities you need, great complex of pools."

Assumptions

Specific Review

"During the summer, we like to take a mini staycation. This year it was extra special as we also got engaged. Our stay at the Biltmore was just fantastic. The service exceptional, the food amazing."

Generic Review

Specific reviews contain more contextual information than generic ones.

"Nice hotel, all the amenities you need, great complex of pools."

Rich Context (RC) Rich Context RCClassifier RCMiner RCRecommender

A World Leading SFI Research Centre 10

2019/01/15

Reviews Classification

- 300 tagged reviews
- Random Forest Classifier
- Features
 - LogWords: log of number of words in the review + 1
 - Vsum: log of number of verbs in the review + 1
 - VBDSum: log of number of verbs in the past tense in the review + 1
 - ProRatio: ratio of log of number of personal pronouns + 1 to LogWords

2019/01/15

Ensemble Topic Modeling

Advantages

- More stable topic models.
- Context-richer topics.

2019/01/15

Topic Model Validation

Which reviews data produces contextricher topic models?

A World Leading SFI Research Centre 14

Topic Model Validation (Stability)

A World Leading SFI Research Centre 15

Topic Model Validation (Context-Richness)

Context Extraction

- Apply the topic model to both specific and generic reviews.
- Count the number of times topics appear in specific and generic reviews.
- The ones that appear more frequently in specific reviews are labeled as contextual topics.

Evaluation - Dataset Description

Yelp Hotels

- 3,809 reviews
- 3,205 users
- 98 items
- 98.79% sparsity

Yelp Restaurants

- 147,864 reviews
- 35,021 users
- 2,550 items
- 99.83% sparsity

TripAdvisor Hotels

- 726,426 reviews
- 526,717 users
- 3,299 items
- 99.96% sparsity

Evaluation - Ranking Prediction (Recall@10)

Evaluation - Rating Prediction (RMSE)

Final Thoughts

Conclusions

- We present a context-driven recommender system that does not pre-defined contextual words.
- We improve recommendations by using the mined contextual information as sideinformation in factorization machines.
- The proposed model does not need expertise about contextual information.

Future Work

- Improve the topic model quality metrics in order to evaluate topic models without having to run the recommender (like a classifier).
- Use topic models to produce explanations of recommendations.
- Extrapolate the same model to other scenarios where documents are available and recommendations are needed, for instance using medical records, law, etc.

Empowering Citizens. Smarter Societies.

Thanks!

Acknowledgments

- Derek Bridge
- Diego Carraro
- Mesut Kaya
- Insight UCC
- SFI

francisco.pena@insight-centre.org

A World Leading SFI Research Centre

References

Adomavicius, G., and Tuzhilin, A. 2011. Context-aware recommender systems. In Ricci, F.; Rokach, L.; Shapira, B.; and Kantor, P. B., eds., *Recommender Systems Handbook*. Springer. 217–253. Arora, S.; Ge, R.; and Moitra, A. 2012. Learning topic mod-els – going beyond SVD. In *IEEE 53rd* Annual Symposium on Foundations of Computer Science, 1–10. Baltrunas, L.; Ludwig, B.; and Ricci, F. 2011. Matrix fac- torization techniques for context aware recommendation. In 5th ACM Conference on Recommender Systems, 301–304. Batista, G. E. A. P. A.; Prati, R. C.; and Monard, M. C. 2004. A study of the behavior of several methods for balanc-ing machine learning training data. SIGKDD Explor. Newsl. 6(1):20–29. Bauman, K., and Tuzhilin, A. 2014. Discovering contex- tual information from user reviews for recommendation pur-poses. In 1st Workshop on New Trends in Content-based Recommender Systems at the 8th ACM Conference on Rec- ommender Systems, 2–9. Belford, M.; Namee, B. M.; and Greene, D. 2016. Ensem- ble topic modeling via matrix factorization. In 24th Irish Conference on Artificial Intelligence and Cognitive Science. Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3:993– 1022

Chen, G., and Chen, L. 2015. Augmenting service recom- mender systems by incorporating contextual opinions from user reviews. *User Modeling and User-Adapted Interaction* 25(3):295–329.

References

Chen, L.; Chen, G.; and Wang, F. 2015. Recommender systems based on user reviews: The state of the art. *User Modeling and User-Adapted Interaction* 25(2):99–154.

Cremonesi, P.; Koren, Y.; and Turrin, R. 2010. Performance of recommender algorithms on top-n recommendation tasks. In *4th ACM Conference on Recommender Systems*, 39–46.

Diao, Q.; Qiu, M.; Wu, C.-Y.; Smola, A. J.; Jiang, J.; and Wang, C. 2014. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In *20th ACM International Conference on Knowledge Discovery and Data Mining*, 193–202.

Greene, D.; O'Callaghan, D.; and Cunningham, P. 2014. How many topics? stability analysis for topic models. In *European Conference on Machine Learning and Knowledge Discovery in Databases*, 498–513.

Hariri, N.; Zheng, Y.; Mobasher, B.; and Burke, R. 2011. Context-aware recommendation based on review mining. In *9th Workshop on Intelligent Techniques for Web Personal- ization & Recommender Systems*, 30–36.

Karatzoglou, A.; Amatriain, X.; Baltrunas, L.; and Oliver, N. 2010. Multiverse recommendation: Ndimensional tensor factorization for context-aware collaborative filtering. In *4th ACM Conference on Recommender Systems*, 79–86.

Lee, D. D., and Seung, S. 1999. Learning the parts of objects by non-negative matrix factorization. *Nature* 401.

Lema[^]itre, G.; Nogueira, F.; and Aridas, C. K. 2016. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. *CoRR* abs/1609.06570.

References

Ling, G.; Lyu, M. R.; and King, I. 2014. Ratings meet reviews, a combined approach to recommend. In *8th ACM Conference on Recommender Systems*, 105–112.

McAuley, J., and Leskovec, J. 2013. Hidden factors and hidden topics: Understanding rating dimensions with review text. In *7th ACM Conference on Recommender Systems*, 165–172.

Pagano, R.; Cremonesi, P.; Larson, M.; Hidasi, B.; Tikk, D.; Karatzoglou, A.; and Quadrana, M. 2016. The contextual turn: From context-aware to context-driven recommender systems. In *10th ACM Conference on Recommender Sys- tems*, 249–252.

Rendle, S. 2012. Factorization machines with libfm. *ACM Trans. Intell. Syst. Technol.* 3(3):57:1–57:22. Shi, Y.; Larson, M.; and Hanjalic, A. 2014. Collaborative fil- tering beyond the user-item matrix: A survey of the state of the art and future challenges. *ACM Comput. Surv.* 47(1):3:1–3:45. Zheng, Y.; Burke, R.; and Mobasher, B. 2013. Recommen- dation with differential context

weighting. In User Model- ing, Adaptation, and Personalization. Springer. 152–164.

Zheng, Y.; Mobasher, B.; and Burke, R. 2014. Cslim: Con-textual slim recommendation algorithms. In *8th ACM Con- ference on Recommender Systems*, 301–304.

Acknowledgements

Diego Carraro

Mesut Kaya

Insight UCC

A World Leading SFI Research Centre 27

26/09/2018

Topic Distribution of the

Review

1.0

0.75

0.5

0.25

 \cap

Topic Modeling

- Each document is a random mixture of corpus-wide topics
- Each topic is composed of words that co-occur along documents

"During the summer, we like to take a mini staycation This year it was extra special as we also got engaged. Our stay at the Biltmore was just fantastic. The service exceptional, the food amazing- it was areat at the pool, Wrights and also at Frank and Alberts. The only reason I am not giving it a full 5 stars is the 'upgraded room was just a nice basic room. Chough it was certainly nice, it wasnt what I expected for being the Biltmore. However, everything else certainly lived up to that expectation".

Summer ((0.04)	Holiday	(0.05)	Room	(0.05)	Free	(0.03)
June ((0.02)	Staycation	(0.03)	Sauna	(0.04)	Expensive	(0.02)
							

Number Of Topics vs Performance

Topic Model Validation (Stability)

Average Descriptor Set Difference

2019/01/15

Topic Model Validation (Stability)

Average Term Stability

A World Leading SFI Research Centre 31

2019/01/15

Topic Model Validation (Context-Richness)

То	Topic 1 Topi		Topic 2 Topic 3		То	pic 4	
family	0.194	sushi	0.271	wife	0.358	service	0.435
sunday	0.086	bar	0.055	date	0.026	atmospl	nere 0.023
town	0.069	town	0.021	birthday	0.020	custome	er 0.018
brunch	0.029	spot	0.020	anniversa	<mark>ry 0.019</mark>	table	0.012
weekend	<mark>l 0.021</mark>	saturday	0.014	weekend	0.015	drink	0.011
Score: 0.33 Score:		0.014	.4 Score: 0.438		Sco	ore: 0.0	

Topic Model Score: 0.1955

$$ts(t) = \sum_{w} (p_{wt} * v_{wt})$$

The topic model score is the average of the topic scores

Evaluation - Generated Topic Models (Yelp Restaurant)

	Ratio	Word 1	Word 2	Word 3	Word 4	Word5
Topic 1	2.03	night	dinner	friend	saturday	friday
Topic 2	1.61	lunch	today	day	friend	yesterday
Topic 3	1.34	time	couple	week	minute	hour
Topic 4	1.1	breakfast	morning	sunday	club	day
Topic 5	1.07	review	yelp	experience	star	read
Topic 6	0.99	scottsdale	location	town	experience	tempe
Topic 7	0.93	restaurant	phoenix	area	mexican	week
Topic 8	0.85	chicken	pizza	burger	sandwich	cheese
Topic 9	0.75	place	area	bar	love	home
Topic 10	0.72	food	service	mexican	atmosphere	price

A World Leading SFI Research Centre 33

Evaluation - Ranking Prediction

Algorithm	Recall@10				
		Yelp	TripAdvisor		
	Hotels	Restaurants	Hotels		
Rich-Context	0.381	0.086	0.074		
Factorization Machines	0.372	0.056	0.057		
BPMF	0.150	0.014	Out of memory		
Biased MF	0.068	0.016	Out of memory		
CAMF-C	0.085	0.016	Out of memory		
CAMF-CI	0.235	0.016	Out of memory		
CAMF-CU	0.239	0.017	Out of memory		
CAMF-CUCI	0.082	0.015	Out of memory		
DCR	0.125	Out of memory	Out of memory		
DCW	0.125	Out of memory	Out of memory		
Improvement (all users)	2.32%	55.07%	30.15%		
Improvement (new users)	3.67%	47.00%	20.50%		

Evaluation - Rating Prediction

Algorithm	RMSE				
	Yelp		TripAdvisor		
	Hotels	Restaurants	Hotels		
Rich-Context	1.050	1.056	0.962		
Factorization Machines	1.106	1.092	1.057		
BPMF	1.495	1.405	1.435		
Biased MF	1.109	1.183	1.104		
CAMF-C	1.100	1.184	1.084		
CAMF-CI	1.160	1.213	1.104		
CAMF-CU	1.343	1.228	1.420		
CAMF-CUCI	1.123	1.200	1.104		
DCR	1.224	Out of memory	Out of memory		
DCW	1.226	1.321	Out of memory		
Improvement (all users)	4.45%	3.29%	8.99%		
Improvement (new users)	5.43%	4.54%	9.96 %		

Topic Model Validation (Stability)

Average Descriptor Set Difference

2019/01/15

Topic Model Validation (Context-Richness)

A World Leading SFI Research Centre 37

26/09/2018

Evaluation - Ranking Prediction

Evaluation metric Recall@10

