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ABSTRACT
In this work we present Rich-Context, a context-driven recom-
mender system that extracts contextual information using topic
modeling without the need to define keywords. Our system uses
the mined context to produce recommendations. We propose a
methodology to measure the quality of context topic models along
with a novel way to represent context that allows it to be used
as side-information in a recommendation engine. Results show
that Rich-Context makes more accurate predictions than five well-
established recommendation algorithms.
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1 INTRODUCTION
User reviews have become a source of additional information for
recommender systems to work with besides ratings. Many recom-
mender systems have successfully extracted information from user
reviews in order to make better recommendations ([6]).

Additionally, [1] has also shown that including contextual infor-
mation into recommender systems leads to improved recommen-
dations. Since context has an influence on how a user perceives a
product or service, the same user could rate the same item with
totally different (1 to 5) ratings depending on the context in which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’17, August 27-31, 2017, Como, Italy
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4652-8/17/08. . . $15.00
https://doi.org/10.1145/3109859.3109865

the item is consumed. For instance, if a user is on a business trip,
she could rate a small hotel room with 5 stars because she is mainly
concerned about the quality of the Wi-Fi, whereas if she goes to
the same hotel with her husband and kids, she could rate it with 2
stars because of the room size and the lack of a swimming pool for
the children. When users rate services, they are not just rating the
facilities, but their overall experience.

Approaches such as [11, 17, 18] have successfully incorporated
contextual information into their recommendation models to pro-
duce more accurate recommendations. They have used datasets
that contain explicit information about the context in which the
items were consumed. The problem with many real-world systems
is that contextual information is not often available or it is very
limited. This happens because users are often not bothered about
stating the context in which they visited a restaurant or hotel, and
web portals normally limit what they ask users for to a couple of
contextual features (typically the purpose of the trip/meal and the
companion). To overcome this lack of extra contextual informa-
tion, several context-aware recommender systems have started to
incorporate contextual information from user-generated reviews
in order to improve the recommendation models ([5, 10]).

When users write reviews, they tend to do it in two styles: giving
detailed stories about their visit, or writing general overviews of
a place. Detailed stories are told when users are describing past
experiences in a hotel or restaurant. On the other hand, most of the
time general overviews cannot be related to a particular visit in the
past. Since every experience happens under a context (there is no
such thing as a context-less experience), we assume that reviews
that describe experiences are going to contain more contextual
information than the ones that do not describe experiences. We
call reviews that describe experiences specific and the ones that
give general descriptions generic ([2]). Reviews in which the author
is describing an experience with a product or service are specific;
for instance: “During the summer, we like to take a mini staycation.
This year it was extra special as we also got engaged. Our stay at the
Biltmore was just fantastic. The service was exceptional, and the food
was amazing”. Generic reviews just give general opinions and do
not describe an experience with the product or service; for instance:
“Nice hotel, all the amenities you need, great complex of pools”.

In this paper we present Rich-Context, a recommender system
that extracts contextual information from user reviews using unsu-
pervised topic modeling algorithms. This has the benefit of not hav-
ing to predefine keywords that describe context, capturing contex-
tual situations that were not considered before, such as wheelchair
accessibility, parking facilities or pet friendliness, we call this latent
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context. We introduce a new way to measure the quality of topic
models in terms of their context-richness and present a novel way to
represent contextual information. Tests on multiple datasets show
that our system can beat several other well-known recommenders
in terms of rating prediction.

The remainder of this paper is organized as follows: Section 2
discusses related work, followed in Section 3 by the methodology to
create a Context-Driven Recommender System. Section 4 introduces
a series of metrics to measure the quality of topic models in terms
of context-richness. Section 5 presents the results and Section 6
contains the conclusions and the future work.

2 RELATEDWORK
Our work relies heavily in two areas, review-based recommender
systems and topic modeling. Latent Dirichlet Allocation ([4, 9, 16])
is arguably the most popular topic modeling algorithm. LDA is a
generative probabilistic model in which documents are represented
as random mixtures of latent topics, and each topic is characterized
by a distribution over words. The main problem with LDA is that
due to its stochastic nature, it produces different topic models on
separate runs over the same data when using distinct random seeds.
To overcome this issue, [3] proposed a technique called Ensemble
Topic Modeling that is based on Non-negative Matrix Factorization
and it factorizes a stacked matrix composed of several runs of the
same topic model using different random seeds. Results show that it
reduces variability, producing more stable and reliable topic models.

[12] link LDA with matrix factorization via a transformation
function to learn more accurately the parameters that lead to better
recommendations. [8] presents an unsupervised model that mines
aspects frommovie reviews using topic modeling and integrates the
mined aspects into the recommendation engine. [5] uses heuristics
to extract contextual information from reviews along with item as-
pects and sentiment. [10] uses a supervised topic modeling method
(Labeled-LDA) to classify reviews based on their context. These
last two methods are the most similar to ours because they also
extract contextual information from user-generated reviews. The
problem with these methods is that all of them have to predefine
the possible types of contextual variables and their values, thus
leaving out many other contextual possibilities.

[2] presents a method to extract contextual information from
user-generated reviews through topic modeling and word similar-
ities. We borrow some of their ideas to build our recommender
system, such as the separation of reviews into specific and generic,
and the use of topic modeling to discover contextual information.

3 METHODOLOGY
Rich-Context is a query-based context-driven recommender system
([13]). In our system the users write queries stating the context in
which they intend to travel and then receive a list of recommen-
dations. It has three main components: RCClassifier, RCMiner and
RCRecommender. RCClassifier separates reviews into specific and
generic, RCMiner creates topic models using only specific reviews
and then labels topics as contextual or non-contextual. Finally,
RCRecommender applies the topic model to the input query and
uses the contextual information contained in the query as side-
information to produce recommendations. An example of a query

for hotels can be “summer holidays children”. Here the user is indi-
cating the context under she wants to travel.

3.1 Classifying Reviews
To classify reviewswe first created a training set of manually labeled
reviews.Wemanually labeled 300 reviews from each of our datasets,
assigning two classes: specific or generic. Reviews that told particular
experiences during a visit were labeled as specific and reviews that
gave a general overview of a place were labeled as generic ([2]).

We perform part-of-speech tagging on those reviews and then
give them to a logistic regression classifier. The features we use
in our classifier are a subset of the features specified in [2] that,
after running several tests, helped us achieve the best classification
performance, viz:
• LogWords: log of number of words in the sentence + 1
• Vsum: log of number of verbs in the sentence + 1
• VBDSum: log of number of verbs in the past tense in the
sentence + 1
• ProRatio: ratio of log of number of personal pronouns + 1 to
LogWords

3.2 Creating Contextual Topic Models
To obtain contextual information from user-generated reviews, we
use topic modeling. The basic idea behind this is to generate a topic
model from a set of documents and then distinguish between topics
that contain contextual information and topics that do not.

In topic modeling documents are expressed as a mixture of topics.
Algorithms such as Latent Dirichlet Allocation take a probabilistic
view of topic modeling, in which the documents are represented as a
probability vector of topics. Other authors have used Non-negative
Matrix Factorization (NMF) for topic modeling. Using NMF we
have a document-term matrix A ∈ Rd×t , where d is the number of
documents and t is the number of terms. Matrix A can be factorized
into two matrices H ∈ Rd×k andW ∈ Rk×t so that A ≈WH. The
Hmatrix may be seen as a document-topic matrix and theWmatrix
can be seen as the topic-term matrix.

To create the topic models, we use the methodology of ensemble
topic modeling proposed by [3]. The goal of this methodology is
to reduce the variability that is characteristic of topic models built
using stochastic algorithms. Since stochastic methods are used, two
topic models that are created using the same dataset but different
random seeds can be quite different. The goal of ensemble topic
modeling is to reduce that variability. This is done by creating a
set of base topic models by executing NMF r times applied to the
same document-term matrix A , then the r generated matrices are
stacked together in one matrix and a final run of NMF is applied to
the stacked matrix in order to obtain the ensembled topic model
([3]).

After we have classified reviews as specific or generic using
RCClassifier, RCMiner creates a topic model using the ensemble
topic model approach proposed by [3] using only specific reviews.
Once the topic model has been created, we apply the topic model
to all the reviews (specific and generic) to obtain the vector of
topic weights for each review and then normalize the vector so its
sum adds up to 1.0. Then, we calculate which topics appear more
frequently in specific reviews than in generic ones. We do so by
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using a variation of the approach proposed in [2] in which, instead
of computing cardinalities, we sum weights for each topic. We say
that topics that appear more frequently in specific reviews than in
generic ones, are contextual topics and those that appear more in
generic reviews are non-contextual topics.

ws (tk ) =

∑
S ∈specificT [k]
|S : S ∈ specific|

(1)

We make a similar calculation for generic reviews:

wд (tk ) =

∑
S ∈genericT [k]
|S : S ∈ generic|

(2)

Finally, the likely contextual topics, CT , are those where the ratio
of the two proportions exceeds a threshold β :

CT =

{
tk |

ws (tk )

wд (tk )
> β

}
(3)

The topic models are created using only the nouns of the specific
reviews, as these capture most of the contextual information. As
we will show in the results sections, using only nouns translates
into more context-rich topic models compared to using words from
all part-of-speech.

3.3 Making Context-driven Recommendations
Once we have created the topic models and separated contextual
topics fromnon-contextual topics, we transform our original dataset
of records from ⟨⟨u, i,Rui , ⟩, rui ⟩ into records where the contextual
information is represented by a vector of contextual topics weights
⟨⟨u, i, c1, . . . , c |CT |⟩, rui ⟩. We do this by applying the topic model
to the review, which will give us a vector with the weights for each
topic; we normalize that vector so all the weights add up to 1.0 and
then we discard the weights of all the topics that have been marked
as non-contextual. We use the vector of contextual topic weights
as side-information and include it into the recommendation model.
For the recommendations we use the LibFM implementation of
Factorization Machines algorithm ([14]). Since we are assuming a
context-driven approach, the user supplies a query containing her
intended context, similarly represented as a vector of weights.

4 TOPIC MODEL METRICS
To evaluate how good our model is, we measured the quality of the
topic models produced. Given that there is not a well-established
methodology to measure the quality of topic models in terms of
their context-richness that we are aware of, we designed our own
metrics. We came up with three metrics to do this: the topic score,
the topic model score and the separation score. We also had to
manually create a vocabulary of contextual words to help us see
if a topic was composed of many contextual words or not. This
vocabulary was used only in this evaluation: it is not used in the
RC system.

4.1 Topic Score
The topic score measures how rich is a topic in terms of context and
is given by ts (t ) =

∑
v ∈V xvt · bvt , where xvt denotes the weight

that the word v has in topic t ,V is the vocabulary of all words, and
bvt is a binary variable that indicates if the word v belongs to the
manually defined vocabulary of contextual words.

Dataset Reviews Users Items Sparsity

Yelp Hotels 4085 3408 102 0.988
Yelp Restaurants 148161 35054 2552 0.998

Table 1: Description of the datasets.

4.2 Topic Model Score
The topic model score is just the average of all the topic scores in
the topic model, and is given by tms =

∑
t∈T ts (t )
|T | , where T is the

set of all topics in the topic model.

4.3 Separation Score
The separation score measures how well our algorithm separates
context-rich topics from non-context-rich topics. It is the average
score of the context-rich topics multiplied by a constant γ plus the
average score of the non-context-rich topics multiplied by 1 − γ :

ss =

[
γ ·

∑
c ∈CT ts (c )

|CT |
+ (1 − γ ) ·

(
1 −

∑
n∈N ts (n)

|NCT |

)]
(4)

whereCT is the set of the topicsmarked as contextual by RCMiner
and NCT is the set of the topics marked as non-contextual (NCT =
T \CT ) and γ is a weight that balances the importance of getting
high scores on context topics versus getting low scores on non-
context topics.

5 RESULTS
To evaluate RCMiner, we used the hotels and restaurants dataset
from Yelp that were provided for the RecSys 2013 competition. We
removed records that contained items that had less than 10 reviews.
Table 1 contains a description of the data after the records were
removed.

5.1 Topic Model Quality
In Table 2 we can see the topic model created from the restaurants
dataset with 10 topics. The contextual words are highlighted. Since
topics 1 to 5 appear more frequently on specific reviews than in
generic ones, they have been labeled by RCMiner as contextual, the
remaining are labeled as non-contextual. The first column of the
Table 2 shows the ratio of frequency appearance of topics within
reviews. For instance Topic 1 appears 2.03 times more in specific
reviews than in generic ones. As we can see in Table 2 contextual
words appear more frequently in topics with high ratio than in
topics with lower ratio.

Table 3 shows that topic models that are richer in contextual
words are obtained if topic models are created only with nouns
of reviews compared to using all the types of words of reviews.
Using only specific reviews leads to context-richer topics in the
hotels dataset, but in the restaurants dataset the same does not
hold. For separation scores there is not a big difference between
using nouns or all types of words. For separation scores we use
a value of γ = 0.5. The baselines in Table 3 are the topic models
created from all reviews using all types of words, we can see that
there is an improvement on creating topic models with just nouns.
Note that for the cases where all reviews are used for building the
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Ratio Word 1 Word 2 Word 3 Word 4 Word 5

2.03 night dinner friend saturday friday
1.61 lunch today day friend yesterday
1.34 time couple week minute hour
1.10 breakfast morning sunday club day
1.07 review yelp experience star read
0.99 scottsdale location town experience tempe
0.93 restaurant phoenix area mexican week
0.85 chicken pizza burger sandwich cheese
0.75 place area bar love home
0.72 food service mexican atmosphere price

Table 2: Yelp Restaurant topic model (Top-5 words)

Dataset Part-of-speech Review Topic Model Separation
Type Score Score

Yelp Hotel All All 0.019 –
Yelp Hotel All Specific 0.025 0.509
Yelp Hotel Nouns All 0.037 –
Yelp Hotel Nouns Specific 0.046 0.504
Yelp Restaurant All All 0.003 –
Yelp Restaurant All Specific 0.007 0.498
Yelp Restaurant Nouns All 0.019 –
Yelp Restaurant Nouns Specific 0.014 0.494

Table 3: Topic model scores across the different datasets

topic model, the separation score can not be calculated since all the
topics would be marked as contextual, having |NCT | = 0, which
makes Equation 4 fail.

5.2 Recommendations
To evaluate our system and compare it with others, we opted to
use the RiVal [15] evaluation framework for recommender systems.
Each record in the dataset ⟨⟨u, i,Rui ⟩, rui ⟩ is transformed to one in
which reviews are represented by their corresponding contextual
topic vectors, ⟨⟨u, i, c1, . . . , c |CT |⟩, rui ⟩. Then, we split the dataset
into training and testing sets. First, we train the recommender using
only the records of the training set. Then, we test, in which we sim-
ulate that the query the user writes is the review Rui , and measure
the RMSE and MAE using only the elements in the test set. We
repeat this step 5 times, doing 5-fold cross validation. We compared
ourselves against several non-context-aware recommender systems
algorithms contained in CARSKit ([19]).

In Tables 4 and 5 we can see the results of comparing Rich-
Context against five well known recommender systems. We can
see that in both datasets we are able to achieve the best rating
prediction. The difference between our approach and the pure fac-
torization machines approach is that ours uses the contextual vector
as side information, along with the ratings, whereas the factoriza-
tion machines just uses the ratings. The implementation is the same,
the difference lies in that for factorization machines the dataset is
composed of records in the form of ⟨⟨u, i⟩, rui ⟩ and for Rich-context
the records are ⟨⟨u, i, c1, . . . , c |CT |⟩, rui ⟩.

Algorithm RMSE MAE

Rich-Context 50 Topics 0.964 0.762
Rich-Context 30 Topics 0.966 0.753
Rich-Context 10 Topics 0.967 0.759
Factorization-Machines 0.986 0.771
BiasedMF 1.090 0.847
SlopeOne 1.165 0.909
BPMF 1.322 1.049
NMF 1.489 1.143

Table 4: Rating prediction performance on the Yelp Hotels
dataset

Algorithm RMSE MAE

Rich-Context 50 Topics 1.019 0.803
Rich-Context 30 Topics 1.019 0.802
Factorization-Machines 1.047 0.824
Rich-Context 10 Topics 1.048 0.824
SlopeOne 1.278 0.973
BPMF 1.305 1.018
BiasedMF 1.333 1.033
NMF 1.378 1.055

Table 5: Rating prediction performance on the Yelp Restau-
rants dataset

For evaluating the Top-N performance of RCRecommender we
are currently running experiments using a methodology based on
[7], with results expected soon.

6 CONCLUSIONS
We have presented Rich-Context, a context-driven recommender
system that can mine contextual information from users reviews
without the need of keywords. The fact that we do not need to
define keywords allows the recommender to have a wider range of
contextual situations and make more accurate recommendations.
We also introduced new metrics to measure the quality of topic
models in terms of context-richness. Tests show that Rich-Context
has better performance compared against five other well established
recommendation algorithms in terms of rating prediction.

Our immediate plans are to evaluate the Top-N performance
of Rich-Context and to compare it against context-aware recom-
menders from CARSKit. We also want to include sentiment analysis
as side-information along with context and test it on other recom-
mendation engines that support side-information besides Factoriza-
tion Machines. To continue our work in building topic models, we
would like to find how to improve topic models in terms of their
separation scores. We would also like to use the generated topic
models to produce explanations of recommendations. Finally, we
would like to explore how our recommender performs in cold-start
scenarios.
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